Patrick J Hanley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2443586/publications.pdf Version: 2024-02-01

DATRICK | HANLEY

#	Article	IF	CITATIONS
1	Tumor-associated antigen–specific T cells with nivolumab are safe and persist in vivo in relapsed/refractory Hodgkin lymphoma. Blood Advances, 2022, 6, 473-485.	2.5	11
2	Delivering externally manufactured cell and gene therapy products to patients: perspectives from the academic center experience. Cytotherapy, 2022, 24, 16-18.	0.3	1
3	ISCT survey on hospital practices to support externally manufactured investigational cell-gene therapy products. Cytotherapy, 2022, 24, 27-31.	0.3	5
4	Off-the-Shelf Third-Party Virus-Specific T Cell Therapy to Treat JC Polyomavirus Infection in Hematopoietic Stem Cell Transplantation Recipients. Transplantation and Cellular Therapy, 2022, 28, 116.e1-116.e7.	0.6	11
5	Editorial: Advances in Pediatric Hematopoietic Cell Therapies and Transplantation. Frontiers in Pediatrics, 2022, 10, 847288.	0.9	Ο
6	Scheduled administration of virus-specific T cells for viral prophylaxis after pediatric allogeneic stem cell transplant. Blood Advances, 2022, 6, 2897-2907.	2.5	13
7	Outcome of donor-derived TAA-T cell therapy in patients with high-risk or relapsed acute leukemia post allogeneic BMT. Blood Advances, 2022, 6, 2520-2534.	2.5	19
8	Availability of Donor Derived Patient Specific Virus-Specific T-Cells (VSTs) Is Not Associated with Differences in Outcomes As Compared to Frontline Administration of Third Party Vsts for the Management of Viral Infections after Pediatric Hematopoietic Stem Cell Transplant. Transplantation and Cellular Therapy, 2022, 28, S374-S375.	0.6	0
9	Transcriptomic analysis reveals optimal cytokine combinations for SARS-CoV-2-specific TÂcell therapy products. Molecular Therapy - Methods and Clinical Development, 2022, 25, 439-447.	1.8	4
10	Processing laboratory considerations for multi-center cellular therapy clinical trials: a report from the Consortium for Pediatric Cellular Immunotherapy. Cytotherapy, 2021, 23, 157-164.	0.3	3
11	Identification of new cytokine combinations for antigen-specific T-cell therapy products via a high-throughput multi-parameter assay. Cytotherapy, 2021, 23, 65-76.	0.3	10
12	Influence of administration of mesenchymal stromal cell on pediatric oxygenator performance and inflammatory response. JTCVS Open, 2021, 5, 99-107.	0.2	7
13	Identification of novel HLA-restricted preferentially expressed antigen in melanoma peptides to facilitate off-the-shelf tumor-associated antigen-specific T-cell therapies. Cytotherapy, 2021, 23, 694-703.	0.3	7
14	Virus-specific T cells for adenovirus infection after stem cell transplantation are highly effective and class II HLA restricted. Blood Advances, 2021, 5, 3309-3321.	2.5	26
15	Flow-based analysis of cell division identifies highly active populations within plasma products during mixed lymphocyte cultures. Blood Transfusion, 2021, 19, 456-466.	0.3	1
16	HIV-Specific T Cells Can Be Generated against Non-escaped T Cell Epitopes with a GMP-Compliant Manufacturing Platform. Molecular Therapy - Methods and Clinical Development, 2020, 16, 11-20.	1.8	16
17	The pipeline of antiviral T ell therapy: what's in the clinic and undergoing development. Transfusion, 2020, 60, 7-10.	0.8	7
18	Generation of Norovirus-Specific T Cells From Human Donors With Extensive Cross-Reactivity to Variant Sequences: Implications for Immunotherapy. Journal of Infectious Diseases, 2020, 221, 578-588.	1.9	15

#	Article	IF	CITATIONS
19	EBVâ€directed viralâ€specific T″ymphocyte therapy for the treatment of EBVâ€driven lymphoma in two patients with primary immunodeficiency and DNA repair defects. Pediatric Blood and Cancer, 2020, 67, e28126.	0.8	4
20	Impact of Mesenchymal Stromal Cell Delivery Through Cardiopulmonary Bypass on Postnatal Neurogenesis. Annals of Thoracic Surgery, 2020, 109, 1274-1281.	0.7	11
21	Engineered Antigen-Specific T Cells Secreting Broadly Neutralizing Antibodies: Combining Innate and Adaptive Immune Response against HIV. Molecular Therapy - Methods and Clinical Development, 2020, 19, 78-88.	1.8	10
22	Emerging trends in COVID-19 treatment: learning from inflammatory conditions associated with cellular therapies. Cytotherapy, 2020, 22, 474-481.	0.3	29
23	Allogeneic Viral Specific T Cells Are Safe and Can be Efficient in the Treatment of Infections in Solid Organ Transplant Recipients. Biology of Blood and Marrow Transplantation, 2020, 26, S344-S345.	2.0	0
24	Complement inhibition does not impair the clinical antiviral capabilities of virus-specific T-cell therapy. Blood Advances, 2020, 4, 3252-3257.	2.5	5
25	SARS-CoV-2–specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood, 2020, 136, 2905-2917.	0.6	108
26	Characterization of Viral Epitopes and the HLA Restriction That Govern Anti-Adenoviral Response to Viral Specific T-Lymphocyte Therapy in a Pediatric Cohort. Biology of Blood and Marrow Transplantation, 2020, 26, S318-S319.	2.0	0
27	Virus-Specific T Cell Therapies for HIV: Lessons Learned From Hematopoietic Stem Cell Transplantation. Frontiers in Cellular and Infection Microbiology, 2020, 10, 298.	1.8	8
28	Virus-Specific T Cells (VSTs) Therapy for Progressive Multifocal Leukoencephalopathy (PML)- a Novel Therapy to Combat a Fatal Disease. Biology of Blood and Marrow Transplantation, 2020, 26, S339-S340.	2.0	0
29	Virus-specific T-cell therapy to treat BK polyomavirus infection in bone marrow and solid organ transplant recipients. Blood Advances, 2020, 4, 5745-5754.	2.5	19
30	Immunotherapy of Relapsed and Refractory Solid Tumors With Ex Vivo Expanded Multi-Tumor Associated Antigen Specific Cytotoxic T Lymphocytes: A Phase I Study. Journal of Clinical Oncology, 2019, 37, 2349-2359.	0.8	56
31	Generation of Zika virus–specific T cells from seropositive and virus-naÃ⁻ve donors for potential use as an autologous or "off-the-shelf―immunotherapeutic. Cytotherapy, 2019, 21, 840-855.	0.3	10
32	Fresh versus Frozen: Effects of Cryopreservation on CAR T Cells. Molecular Therapy, 2019, 27, 1213-1214.	3.7	14
33	Driving the CAR to the Bone Marrow Transplant Program. Current Hematologic Malignancy Reports, 2019, 14, 561-569.	1.2	10
34	Medulloblastoma rendered susceptible to NK-cell attack by TGFÎ ² neutralization. Journal of Translational Medicine, 2019, 17, 321.	1.8	32
35	Generation of Zika Virus-Specific T-Cells for Adoptive Immunotherapy. Biology of Blood and Marrow Transplantation, 2019, 25, S348-S349.	2.0	0
36	T ell receptor sequencing demonstrates persistence of virusâ€specific T cells after antiviral immunotherapy. British Journal of Haematology, 2019, 187, 206-218.	1.2	29

#	Article	IF	CITATIONS
37	Advancing cellular therapies towards standard of care: a focus on testing of cellular therapy products. Cytotherapy, 2019, 21, 275-277.	0.3	1
38	Beyond CAR T Cells: Other Cell-Based Immunotherapeutic Strategies Against Cancer. Frontiers in Oncology, 2019, 9, 196.	1.3	44
39	Proposal for the International Society for Cell & Gene Therapy position statement on assays for the quality control and potency assessment of adoptive cellular immunotherapies. Cytotherapy, 2019, 21, 367-375.	0.3	3
40	Hexaviral Specific T-Cells Used for Prophylaxis and Treatment of Viral Infections in Patients Post Stem Cell Transplant. Biology of Blood and Marrow Transplantation, 2019, 25, S337.	2.0	1
41	Critical testing and parameters for consideration when manufacturing and evaluating tumor–associated antigen-specific T cells. Cytotherapy, 2019, 21, 278-288.	0.3	9
42	Mycobacteria-Specific T Cells May Be Expanded From Healthy Donors and Are Near Absent in Primary Immunodeficiency Disorders. Frontiers in Immunology, 2019, 10, 621.	2.2	4
43	Safety and feasibility of virus-specific T cells derived from umbilical cord blood in cord blood transplant recipients. Blood Advances, 2019, 3, 2057-2068.	2.5	27
44	Manufacturing Mesenchymal Stromal Cell Banks. , 2019, , 63-84.		3
45	HIV-Specific, ExÂVivo Expanded T Cell Therapy: Feasibility, Safety, and Efficacy in ART-Suppressed HIV-Infected Individuals. Molecular Therapy, 2018, 26, 2496-2506.	3.7	32
46	EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood, 2018, 132, 2351-2361.	0.6	49
47	Build a Bank: Off-the-Shelf Virus-Specific T Cells. Biology of Blood and Marrow Transplantation, 2018, 24, e9-e10.	2.0	6
48	Antiviral T Cells for Adenovirus in the Pretransplant Period: A Bridge Therapy for Severe Combined Immunodeficiency. Biology of Blood and Marrow Transplantation, 2018, 24, 1944-1946.	2.0	6
49	Building a Third-Party VST Bank From Scratch—the Cincinnati Experience. Biology of Blood and Marrow Transplantation, 2018, 24, S90.	2.0	0
50	Intravenous mesenchymal stromal cell therapy for inflammatory bowel disease: Lessons from the acute graft versus host disease experience. Cytotherapy, 2017, 19, 655-667.	0.3	10
51	Mobilizing Immune Cells With Exercise for Cancer Immunotherapy. Exercise and Sport Sciences Reviews, 2017, 45, 163-172.	1.6	37
52	Toward a Rapid Production of Multivirus-Specific T Cells Targeting BKV, Adenovirus, CMV, and EBV from Umbilical Cord Blood. Molecular Therapy - Methods and Clinical Development, 2017, 5, 13-21.	1.8	38
53	Infusion of Donor Lymphocytes Specifically Directed to Multiple Tumor Antigens for the Treatment of High Risk Patients after HCT. Biology of Blood and Marrow Transplantation, 2017, 23, S41.	2.0	1
54	The Cost Effectiveness of Manufacturing Antigen-Specific T Cells in an Academic GMP Facility. Biology of Blood and Marrow Transplantation, 2017, 23, S62.	2.0	0

#	Article	IF	CITATIONS
55	Considerations in T Cell Therapy Product Development for B Cell Leukemia and Lymphoma Immunotherapy. Current Hematologic Malignancy Reports, 2017, 12, 335-343.	1.2	9
56	Mesenchymal stromal cell secretomes are modulated by suspension time, delivery vehicle, passage through catheter, and exposure to adjuvants. Cytotherapy, 2017, 19, 36-46.	0.3	11
57	Immunotherapeutic approaches for the treatment of childhood, adolescent and young adult nonâ€Hodgkin lymphoma. British Journal of Haematology, 2016, 173, 597-616.	1.2	16
58	A single exercise bout enhances the manufacture of viral-specific T-cells from healthy donors: implications for allogeneic adoptive transfer immunotherapy. Scientific Reports, 2016, 6, 25852.	1.6	22
59	Isolation and Manufacture of Clinical-Grade Bone Marrow-Derived Human Mesenchymal Stromal Cells. Methods in Molecular Biology, 2016, 1416, 301-312.	0.4	3
60	A PHASE 1 Perspective: Multivirus-Specific T CELLS from BOTH Cord Blood and BONE Marrow Transplant Donors. Biology of Blood and Marrow Transplantation, 2016, 22, S140-S141.	2.0	0
61	Human parainfluenza virus-3 can be targeted by rapidly ex vivo expanded T lymphocytes. Cytotherapy, 2016, 18, 1515-1524.	0.3	33
62	Adoptive immunotherapy for primary immunodeficiency disorders with virus-specific T lymphocytes. Journal of Allergy and Clinical Immunology, 2016, 137, 1498-1505.e1.	1.5	117
63	A Single Bout Of Exercise Enhances The Ex Vivo Manufacture Of Viral-specific T-cells. Medicine and Science in Sports and Exercise, 2016, 48, 85.	0.2	0
64	Reduced Intensity Allogeneic Stem Cell Transplantation Followed By Adoptive Cellular Immunotherapy with Donor Derived LMP Specific-CTLs in Patients with EBV Positive Refractory or Recurrent Hodgkin Lymphoma: AÂLymphoma Cell Therapy Consortium (LCTC) Trial. Biology of Blood and Marrow Transplantation, 2015, 21, S196-S197.	2.0	0
65	Viral-Specific T Lymphocytes for Treatment of Viral Infections in Primary Immunodeficiency. Biology of Blood and Marrow Transplantation, 2015, 21, S229-S230.	2.0	3
66	Adoptive immunotherapy with the use of regulatory T cells and virus-specific T cells derived from cord blood. Cytotherapy, 2015, 17, 749-755.	0.3	18
67	A single bout of dynamic exercise by healthy adults enhances the generation of monocyte-derived-dendritic cells. Cellular Immunology, 2015, 295, 52-59.	1.4	23
68	CMV-specific T cells generated from naÃ ⁻ ve T cells recognize atypical epitopes and may be protective in vivo. Science Translational Medicine, 2015, 7, 285ra63.	5.8	93
69	Quantitative activation suppression assay to evaluate human bone marrow–derived mesenchymal stromal cell potency. Cytotherapy, 2015, 17, 1675-1686.	0.3	31
70	Graft Versus Leukemia Response Without Graft-versus-host Disease Elicited By Adoptively Transferred Multivirus-specific T-cells. Molecular Therapy, 2015, 23, 179-183.	3.7	28
71	A single bout of dynamic exercise enhances the expansion of MAGE-A4 and PRAME-specific cytotoxic T-cells from healthy adults. Exercise Immunology Review, 2015, 21, 144-53.	0.4	27
72	Therapeutic Mesenchymal Stromal Cells: Where We Are Headed. Methods in Molecular Biology, 2014, 1283, 1-11.	0.4	5

#	Article	IF	CITATIONS
73	Controlling Cytomegalovirus: Helping the Immune System Take the Lead. Viruses, 2014, 6, 2242-2258.	1.5	66
74	Using the Quantum Cell Expansion System for the Automated Expansion of Clinical-Grade Bone Marrow-Derived Human Mesenchymal Stromal Cells. Methods in Molecular Biology, 2014, 1283, 53-63.	0.4	16
75	Low rate of infusional toxicity after expanded cord blood transplantation. Cytotherapy, 2014, 16, 1153-1157.	0.3	10
76	Finessing the manufacture of mesenchymal stromal cells. Cytotherapy, 2014, 16, 711-712.	0.3	4
77	Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System. Cytotherapy, 2014, 16, 1048-1058.	0.3	128
78	The time is now: moving toward virus-specific T cells after allogeneic hematopoietic stem cell transplantation as the standard of care. Cytotherapy, 2014, 16, 149-159.	0.3	66
79	Extending the Option of CMV-Specific T Cells from the CMV-Seronegative Donor. Biology of Blood and Marrow Transplantation, 2014, 20, S131.	2.0	0
80	The effects of age and latent cytomegalovirus infection on the redeployment of CD8+ T cell subsets in response to acute exercise in humans. Brain, Behavior, and Immunity, 2014, 39, 142-151.	2.0	53
81	A Novel Standardized Quantitative Suppression Assay Reveals a Diversity of Human Immune-Regulatory Cell Potency. Blood, 2014, 124, 316-316.	0.6	Ο
82	Graft Versus Leukemia Response without Graft Versus Host Disease Elicited By Adoptively Transferred Multivirus-Specific T-Cells. Blood, 2014, 124, 2439-2439.	0.6	0
83	Manufacturing mesenchymal stromal cells for phase I clinical trials. Cytotherapy, 2013, 15, 416-422.	0.3	49
84	Generation of Polyclonal CMV-specific T Cells for the Adoptive Immunotherapy of Glioblastoma. Journal of Immunotherapy, 2012, 35, 159-168.	1.2	59
85	Expanding Cytotoxic T Lymphocytes from Umbilical Cord Blood that Target Cytomegalovirus, Epstein-Barr Virus, and Adenovirus. Journal of Visualized Experiments, 2012, , e3627.	0.2	20
86	Improving Immune Reconstitution After Cord Blood Transplantation Using Ex Vivo Expanded Virus-Specific T Cells: A Phase I Clinical Study. Blood, 2012, 120, 224-224.	0.6	2
87	Clinical-Scale Expansion of Human Bone Marrow-Derived Mesenchymal Stromal Cells to Treat Patients After Ischemic Stroke Blood, 2012, 120, 3021-3021.	0.6	0
88	Expansion of T cells targeting multiple antigens of cytomegalovirus, Epstein–Barr virus and adenovirus to provide broad antiviral specificity after stem cell transplantation. Cytotherapy, 2011, 13, 976-986.	0.3	50
89	Activation of Wnt Signaling Arrests Effector Differentiation in Human Peripheral and Cord Blood-Derived T Lymphocytes. Journal of Immunology, 2011, 187, 5221-5232.	0.4	58
90	Phase I Study to Improve Virus-Specific Immune Reconstitution After Cord Blood Transplantation Using Cord Blood-Derived Virus-Specific Cytotoxic T Lymphocytes. Blood, 2011, 118, 155-155.	0.6	4

#	Article	IF	CITATIONS
91	Nail̂`ve T Cell-Derived CTL Recognize Atypical Epitopes of CMVpp65 with Higher Avidity Than CMV-Seropositive Donor-Derived CTL – a Basis for Treatment of Post-Transplant Viral Infection by Adoptive Transfer of T Cells From Virus-nail̂`ve Donors. Blood, 2011, 118, 3002-3002.	0.6	0
92	Improving clinical outcomes using adoptively transferred immune cells from umbilical cord blood. Cytotherapy, 2010, 12, 713-720.	0.3	27
93	Adverse events following infusion of T cells for adoptive immunotherapy: a 10-year experience. Cytotherapy, 2010, 12, 743-749.	0.3	75
94	Derivation of human T lymphocytes from cord blood and peripheral blood with antiviral and antileukemic specificity from a single culture as protection against infection and relapse after stem cell transplantation. Blood, 2010, 115, 2695-2703.	0.6	105
95	Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood, 2009, 114, 1958-1967.	0.6	235
96	Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood, 2009, 114, 4283-4292.	0.6	311