
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/244326/publications.pdf Version: 2024-02-01

FADZAD SEIDI

#	Article	IF	CITATIONS
1	Designing Smart Polymer Conjugates for Controlled Release of Payloads. Chemical Reviews, 2018, 118, 3965-4036.	23.0	235
2	Natural Polymer-Based Antimicrobial Hydrogels without Synthetic Antibiotics as Wound Dressings. Biomacromolecules, 2020, 21, 2983-3006.	2.6	207
3	Polymers Based on Cyclic Carbonates as <i>Trait d'Union</i> Between Polymer Chemistry and Sustainable CO ₂ Utilization. ChemSusChem, 2019, 12, 724-754.	3.6	156
4	Multi-Layer Functionalized Poly(Ionic Liquid) Coated Magnetic Nanoparticles: Highly Recoverable and Magnetically Separable BrÃ,nsted Acid Catalyst. ACS Catalysis, 2012, 2, 1259-1266.	5.5	148
5	Agarose-based biomaterials for advanced drug delivery. Journal of Controlled Release, 2020, 326, 523-543.	4.8	134
6	Horseradish Peroxidase as a Catalyst for Atom Transfer Radical Polymerization. Macromolecular Rapid Communications, 2011, 32, 1710-1715.	2.0	127
7	Agarose-Based Biomaterials: Opportunities and Challenges in Cartilage Tissue Engineering. Polymers, 2020, 12, 1150.	2.0	120
8	Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chemistry, 2021, 337, 127750.	4.2	110
9	Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. Journal of Controlled Release, 2018, 284, 188-212.	4.8	101
10	Metal-Organic Framework (MOF)/Epoxy Coatings: A Review. Materials, 2020, 13, 2881.	1.3	99
11	Chitosan-based blends for biomedical applications. International Journal of Biological Macromolecules, 2021, 183, 1818-1850.	3.6	97
12	Antimicrobial/Biocompatible Hydrogels Dual-Reinforced by Cellulose as Ultrastretchable and Rapid Self-Healing Wound Dressing. Biomacromolecules, 2021, 22, 1654-1663.	2.6	94
13	Hemoglobin and Red Blood Cells Catalyze Atom Transfer Radical Polymerization. Biomacromolecules, 2013, 14, 2703-2712.	2.6	89
14	Efficient CO ₂ -removal using novel mixed-matrix membranes with modified TiO ₂ nanoparticles. Journal of Materials Chemistry A, 2017, 5, 4011-4025.	5.2	87
15	Synthesis and swelling behavior of acrylatedstarch-g-poly (acrylic acid) and acrylatedstarch-g-poly (acrylamide) hydrogels. Carbohydrate Polymers, 2010, 79, 933-940.	5.1	84
16	Functionalized Masks: Powerful Materials against COVIDâ€19 and Future Pandemics. Small, 2021, 17, e2102453.	5.2	82
17	Transparent nanocomposite coatings based on epoxy and layered double hydroxide: Nonisothermal cure kinetics and viscoelastic behavior assessments. Progress in Organic Coatings, 2017, 113, 126-135.	1.9	76
18	N-doped porous carbon nanofibers fabricated by bacterial cellulose-directed templating growth of MOF crystals for efficient oxygen reduction reaction and sodium-ion storage. Carbon, 2020, 168, 12-21.	5.4	63

FARZAD SEIDI

#	Article	IF	CITATIONS
19	Synthesis of hybrid materials using graft copolymerization on non-cellulosic polysaccharides via homogenous ATRP. Progress in Polymer Science, 2018, 76, 1-39.	11.8	58
20	Biomedical application of hyperbranched polymers: Recent Advances and challenges. TrAC - Trends in Analytical Chemistry, 2021, 142, 116308.	5.8	58
21	Emulsion Techniques for the Production of Pharmacological Nanoparticles. Macromolecular Bioscience, 2019, 19, e1900063.	2.1	57
22	Novel chitosan-based nanobiohybrid membranes for wound dressing applications. RSC Advances, 2016, 6, 7701-7711.	1.7	56
23	pH-Sensitive Polymer Conjugates for Anticorrosion and Corrosion Sensing. ACS Applied Materials & Interfaces, 2018, 10, 20876-20883.	4.0	56
24	Poly (amino acids) towards sensing: Recent progress and challenges. TrAC - Trends in Analytical Chemistry, 2021, 140, 116279.	5.8	53
25	Core-shell heterostructured nanofibers consisting of Fe7S8 nanoparticles embedded into S-doped carbon nanoshells for superior electromagnetic wave absorption. Chemical Engineering Journal, 2021, 423, 130307.	6.6	51
26	Polycyclodextrins: Synthesis, functionalization, and applications. Carbohydrate Polymers, 2020, 242, 116277.	5.1	51
27	Smartphone based immunosensors as next generation of healthcare tools: Technical and analytical overview towards improvement of personalized medicine. TrAC - Trends in Analytical Chemistry, 2021, 145, 116455.	5.8	48
28	Synthesis and investigation of swelling behavior of new agar based superabsorbent hydrogel as a candidate for agrochemical delivery. Journal of Polymer Research, 2009, 16, 655-665.	1.2	47
29	Synthesis and Application of Fe3O4@SiO2@Carboxyl-Terminated PAMAM Dendrimer Nanocomposite for Heavy Metal Removal. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 2835-2843.	1.9	46
30	Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. Journal of Hazardous Materials, 2022, 424, 127391.	6.5	46
31	Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydrate Polymers, 2021, 262, 117963.	5.1	45
32	Anti-bacterial activity of gold nanocomposites as a new nanomaterial weapon to combat photogenic agents: recent advances and challenges. RSC Advances, 2021, 11, 34688-34698.	1.7	44
33	Next generation polymers of intrinsic microporosity with tunable moieties for ultrahigh permeation and precise molecular CO2 separation. Progress in Energy and Combustion Science, 2021, 84, 100903.	15.8	43
34	Versatile functionalization of polymer nanoparticles with carbonate groups <i>via</i> hydroxyurethane linkages. Polymer Chemistry, 2019, 10, 3571-3584.	1.9	41
35	Crystalline polysaccharides: A review. Carbohydrate Polymers, 2022, 275, 118624.	5.1	41
36	Elucidating the impact of enzymatic modifications on the structure, properties, and applications of cellulose, chitosan, starch and their derivatives: a review. Materials Today Chemistry, 2022, 24, 100780.	1.7	41

#	Article	IF	CITATIONS
37	Functional materials generated by allying cyclodextrin-based supramolecular chemistry with living polymerization. Polymer Chemistry, 2019, 10, 3674-3711.	1.9	39
38	Flame Retardant Polypropylenes: A Review. Polymers, 2020, 12, 1701.	2.0	39
39	Both Tough and Soft Double Network Hydrogel Nanocomposite Based on Oâ€Carboxymethyl Chitosan/Poly(vinyl alcohol) and Graphene Oxide: A Promising Alternative for Tissue Engineering. Polymer Engineering and Science, 2020, 60, 889-899.	1.5	38
40	Recent advances on the bacterial cellulose-derived carbon aerogels. Journal of Materials Chemistry C, 2021, 9, 818-828.	2.7	38
41	Thiomers of Chitosan and Cellulose: Effective Biosorbents for Detection, Removal and Recovery of Metal Ions from Aqueous Medium. Chemical Record, 2021, 21, 1876-1896.	2.9	38
42	Prodrug Polymeric Nanoconjugates Encapsulating Gold Nanoparticles for Enhanced Xâ€Ray Radiation Therapy in Breast Cancer. Advanced Healthcare Materials, 2022, 11, e2102321.	3.9	38
43	Superâ€crosslinked ionic liquidâ€intercalated montmorillonite/epoxy nanocomposites: Cure kinetics, viscoelastic behavior and thermal degradation mechanism. Polymer Engineering and Science, 2020, 60, 1940-1957.	1.5	37
44	Three in one: <i>β</i> â€cyclodextrin, nanohydroxyapatite, and a nitrogenâ€rich polymer integrated into a new flame retardant for poly (lactic acid). Fire and Materials, 2018, 42, 593-602.	0.9	35
45	Selfâ€healing Polyol/Borax Hydrogels: Fabrications, Properties and Applications. Chemical Record, 2020, 20, 1142-1162.	2.9	35
46	Synthesis and application of a novel Amino-Starch derivative as a new polymeric additive for fixed facilitated transport of carbon dioxide through an asymmetric polyethersulfone (PES) membrane. International Journal of Greenhouse Gas Control, 2013, 19, 126-137.	2.3	33
47	Fighting corrosion with stimuli-responsive polymer conjugates. Chemical Communications, 2020, 56, 11931-11940.	2.2	32
48	Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. Polymer Chemistry, 2020, 11, 4355-4381.	1.9	32
49	Injectable Cell-Laden Hydrogels for Tissue Engineering: Recent Advances and Future Opportunities. Tissue Engineering - Part A, 2021, 27, 821-843.	1.6	32
50	Magnetic removal of crystal violet from aqueous solutions using polysaccharideâ€based magnetic nanocomposite hydrogels. Polymer International, 2013, 62, 1038-1044.	1.6	31
51	Fixed facilitated transport of CO 2 through integrally-skinned asymmetric polyethersulfone membrane using a novel synthesized Poly (acrylonitrile-co-N, N-Dimethylaminopropyl acrylamide). Chemical Engineering Journal, 2014, 236, 263-273.	6.6	31
52	The Fe3O4@apple seed starch core-shell structure decorated In(III): A green biocatalyst for the one-pot multicomponent synthesis of pyrazole-fused isocoumarins derivatives under solvent-free conditions. International Journal of Biological Macromolecules, 2021, 190, 61-71.	3.6	29
53	Sensitive immunosensing of α-synuclein protein in human plasma samples using gold nanoparticles conjugated with graphene: an innovative immuno-platform towards early stage identification of Parkinson's disease using point of care (POC) analysis. RSC Advances, 2022, 12, 4346-4357.	1.7	29
54	Degradable polyprodrugs: design and therapeutic efficiency. Chemical Society Reviews, 2022, 51, 6652-6703.	18.7	28

FARZAD SEIDI

#	Article	IF	CITATIONS
55	Synthesis and Investigation of Swelling Behavior of Grafted Alginate/Alumina Superabsorbent Composite. Starch/Staerke, 2008, 60, 457-466.	1.1	26
56	A New Pentiptyceneâ€Based Dianhydride and Its Highâ€Freeâ€Volume Polymer for Carbon Dioxide Removal. ChemSusChem, 2018, 11, 472-482.	3.6	26
57	Virucidal and biodegradable specialty cellulose nonwovens as personal protective equipment against COVID-19 pandemic. Journal of Advanced Research, 2022, 39, 147-156.	4.4	26
58	Green Polymer Nanocomposites for Skin Tissue Engineering. ACS Applied Bio Materials, 2022, 5, 2107-2121.	2.3	26
59	Polydopamine Biomaterials for Skin Regeneration. ACS Biomaterials Science and Engineering, 2022, 8, 2196-2219.	2.6	26
60	Designing syntheses of cellulose and starch derivatives with basic or cationic <i>N</i> â€functions: part I—cellulose derivatives. Polymers for Advanced Technologies, 2016, 27, 5-32.	1.6	25
61	Hemiaminal ether linkages provide a selective release of payloads from polymer conjugates. Chemical Communications, 2018, 54, 13730-13733.	2.2	25
62	Redoxâ€Responsive Polymer with Selfâ€Immolative Linkers for the Release of Payloads. Macromolecular Rapid Communications, 2018, 39, e1800071.	2.0	25
63	Controlling release kinetics of pH-responsive polymer nanoparticles. Polymer Chemistry, 2020, 11, 1752-1762.	1.9	25
64	Trifluralin recognition using touchâ€based fingertip: Application of wearable gloveâ€based sensor toward environmental pollution and human health control. Journal of Molecular Recognition, 2021, 34, e2927.	1.1	25
65	Cell-Seeded Biomaterial Scaffolds: The Urgent Need for Unanswered Accelerated Angiogenesis. International Journal of Nanomedicine, 2022, Volume 17, 1035-1068.	3.3	25
66	Facilitated transport of CO ₂ through novel imidazole-containing chitosan derivative/PES membranes. RSC Advances, 2015, 5, 67299-67307.	1.7	24
67	A microfluidic paper-based colorimetric device for the visual detection of uric acid in human urine samples. Analytical Methods, 2021, 13, 3909-3921.	1.3	24
68	Synthesis of soluble <i>N</i> â€functionalized polysaccharide derivatives using phenyl carbonate precursor and their application as catalysts. Starch/Staerke, 2011, 63, 780-791.	1.1	23
69	Enzymatic recognition of hydrogen peroxide (H ₂ O ₂) in human plasma samples using <scp>HRP</scp> immobilized on the surface of poly(arginineâ€toluidine blue)― <scp>Fe₃O₄</scp> nanoparticles modified polydopamine; A novel biosensor. lournal of Molecular Recognition, 2021, 34, e2928.	1.1	23
70	Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction. Carbohydrate Polymers, 2022, 295, 119787.	5.1	23
71	Layerâ€byâ€Layer Assembly for Surface Tethering of Thinâ€Hydrogel Films: Design Strategies and Applications. Chemical Record, 2020, 20, 857-881.	2.9	22
72	Imidazole-functionalized nitrogen-rich Mg-Al-CO3 layered double hydroxide for developing highly crosslinkable epoxy with high thermal and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125826.	2.3	22

#	Article	IF	CITATIONS
73	Architecture of a multi-channel and easy-to-make microfluidic paper-based colorimetric device (μPCD) towards selective and sensitive recognition of uric acid by AuNPs: an innovative portable tool for the rapid and low-cost identification of clinically relevant biomolecules. RSC Advances, 2021, 11, 27298-27308.	1.7	22
74	Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydrate Polymers, 2022, 278, 118998.	5.1	22
75	Synthesis and characterization of a new amino chitosan derivative for facilitated transport of CO2 through thin film composite membranes. Macromolecular Research, 2016, 24, 1-8.	1.0	21
76	Encapsulation of an anticancer drug Isatin inside a host nano-vehicle SWCNT: a molecular dynamics simulation. Scientific Reports, 2021, 11, 18753.	1.6	21
77	Human Organsâ€onâ€Chips: A Review of the Stateâ€ofâ€theâ€Art, Current Prospects, and Future Challenges. Advanced Biology, 2022, 6, e2000526.	1.4	21
78	Biopolymer-based membranes from polysaccharides for CO2 separation: a review. Environmental Chemistry Letters, 2022, 20, 1083-1128.	8.3	21
79	Design and Construction of Fluorescent Cellulose Nanocrystals for Biomedical Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	21
80	Polymer conjugates for dual functions of reporting and hindering corrosion. Polymer, 2020, 194, 122346.	1.8	20
81	Application of Cys A@AuNPs supported amino acids towards rapid and selective identification of Hg(II) and Cu(II) ions in aqueous solution: An innovative microfluidic paper-based (μPADs) colorimetric sensing platform. Journal of Molecular Liquids, 2021, 338, 117020.	2.3	20
82	An innovative colorimetric platform for the low-cost and selective identification of Cu(II), Fe(III), and Hg(II) using GQDs-DPA supported amino acids by microfluidic paper-based (µPADs) device: Multicolor plasmonic patterns. Journal of Environmental Chemical Engineering, 2021, 9, 106197.	3.3	20
83	Fluorescent paper-based analytical devices for ultra-sensitive dual-type RNA detections and accurate gastric cancer screening. Biosensors and Bioelectronics, 2022, 197, 113781.	5.3	20
84	Grafted CMC/silica gel superabsorbent composite: Synthesis and investigation of swelling behavior in various media. Journal of Applied Polymer Science, 2008, 108, 3281-3290.	1.3	19
85	New smart carrageenanâ€based superabsorbent hydrogel hybrid: Investigation of swelling rate and environmental responsiveness. Journal of Applied Polymer Science, 2010, 117, 3228-3238.	1.3	19
86	Programming pH-responsive release of two payloads from dextran-based nanocapsules. Carbohydrate Polymers, 2019, 217, 217-223.	5.1	18
87	Polymers with Hemiaminal Ether Linkages for pH-Responsive Antibacterial Materials. ACS Macro Letters, 2021, 10, 365-369.	2.3	18
88	Recent advances in polymerizations in dispersed media. Advances in Colloid and Interface Science, 2018, 260, 24-31.	7.0	16
89	Naturally Occurring Exopolysaccharide Nanoparticles: Formation Process and Their Application in Glutathione Detection. ACS Applied Materials & amp; Interfaces, 2021, 13, 19756-19767.	4.0	16
90	Preparation of acrylated agaroseâ€based hydrogels and investigation of their application as fertilizing systems. Journal of Applied Polymer Science, 2011, 122, 2424-2432.	1.3	15

#	Article	IF	CITATIONS
91	Oligo(thioetherâ€ester)s Blocks in Polyurethanes for Slowly Releasing Active Payloads. Macromolecular Chemistry and Physics, 2018, 219, 1800392.	1.1	15
92	Physical aging of polyetherimide membranes. Journal of Natural Gas Science and Engineering, 2015, 27, 651-660.	2.1	14
93	Sustainable Recovery of Silver from Deactivated Catalysts Using a Novel Process Combining Leaching and Emulsion Liquid Membrane Techniques. Industrial & Engineering Chemistry Research, 2018, 57, 13821-13832.	1.8	14
94	Providing multicolor plasmonic patterns with graphene quantum dots functionalized dâ€penicillamine for visual recognition of V(V), Cu (<scp>II</scp>), and Fe(<scp>III</scp>): Colorimetric fingerprints of GQDsâ€DPA for discriminating ions in human urine samples. Journal of Molecular Recognition, 2021, 34, e2936.	1.1	14
95	Magnetic nanoparticles double wrapped into cross-linked salep/PEGylated carboxymethyl cellulose; a biocompatible nanocarrier for pH-triggered release of doxorubicin. International Journal of Biological Macromolecules, 2020, 158, 994-1006.	3.6	13
96	Nonisothermal Cure Kinetics of Epoxy/Polyvinylpyrrolidone Functionalized Superparamagnetic Nano-Fe3O4 Composites: Effect of Zn and Mn Doping. Journal of Composites Science, 2020, 4, 55.	1.4	13
97	Advanced Surfaces by Anchoring Thin Hydrogel Layers of Functional Polymers. Chinese Journal of Polymer Science (English Edition), 2021, 39, 14-34.	2.0	12
98	Thiol-Lactam Initiated Radical Polymerization (TLIRP): Scope and Application for the Surface Functionalization of Nanoparticles. Mini-Reviews in Organic Chemistry, 2022, 19, 416-431.	0.6	12
99	Introduction of a novel aminoâ€egarose (AAG) derivative as a fixed facilitated transport carrier to prepare newly asymmetric PES/AAG membranes for CO ₂ removal. , 2015, 5, 701-713.		11
100	Synthesis of water soluble quaternary chitosan derivative via protection-deprotection strategy and investigation of its antibacterial effect. Polymer Science - Series B, 2016, 58, 341-346.	0.3	11
101	PEGylation of shellac-based nanocarriers for enhanced colloidal stability. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110434.	2.5	11
102	Acid-cleavable polymers for simultaneous fast and slow release of functional molecules. Polymer Chemistry, 2020, 11, 4723-4728.	1.9	11
103	Dynamics of Antimicrobial Peptide Encapsulation in Carbon Nanotubes: The Role of Hydroxylation. International Journal of Nanomedicine, 2022, Volume 17, 125-136.	3.3	11
104	Synthesis of a PEG-PNIPAm thermosensitive dendritic copolymer and investigation of its self-association. Chinese Journal of Polymer Science (English Edition), 2015, 33, 192-202.	2.0	10
105	α-Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study. International Journal of Nanomedicine, 2021, Volume 16, 4277-4288.	3.3	9
106	Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment. Polymers, 2022, 14, 1806.	2.0	9
107	Comparative review of piezoelectric biomaterials approach for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition, 2022, 33, 1555-1594.	1.9	9
108	ATRPases: Using Nature's Catalysts in Atom Transfer Radical Polymerizations. ACS Symposium Series, 2012, , 171-181.	0.5	8

#	Article	IF	CITATIONS
109	Preparation and characterization of a novel water soluble amino chitosan (amino-CS) derivative for facilitated transport of CO2. Polymer Science - Series B, 2017, 59, 173-182.	0.3	8
110	A complete description on effect of β-cyclodextrin-ester as a bio-based additive for preparation of safe PVC: From synthesis to computational study. Materials Today Communications, 2020, 22, 100736.	0.9	8
111	A novel amino cellulose derivative using ATRP method: Preparation, characterization, and investigation of its antibacterial activity. Bioorganic Chemistry, 2021, 106, 104355.	2.0	8
112	Synthesis of Novel Water oluble Aminodeoxychitin Derivatives. Starch/Staerke, 2007, 59, 557-562.	1.1	7
113	Use of a novel initiator for synthesis of amino-end functionalized polystyrene (NH2-PS) by atom transfer radical polymerization. Journal of Polymer Research, 2012, 19, 1.	1.2	7
114	Dual-Responsive Polymer Conjugates with Enhanced Anticorrosion Performance. ACS Applied Polymer Materials, 0, , .	2.0	7
115	ATRPases: Enzymes as Catalysts for Atom Transfer Radical Polymerization. Chimia, 2012, 66, 66.	0.3	6
116	Preparation and characterization of an aminoâ€cellulose (AC) derivative for development of thinâ€film composite membrane for CO ₂ /CH ₄ separation. Starch/Staerke, 2016, 68, 651-661.	1.1	6
117	Preparation and Characterization of Thinâ€Film Nanocomposite Membrane Incorporated with MoO ₃ Nanoparticles with High Flux Performance for Forward Osmosis. ChemistrySelect, 2019, 4, 7832-7837.	0.7	6
118	Adsorption onto zeolites: molecular perspective. Chemical Papers, 2021, 75, 6217-6239.	1.0	6
119	Synthesis of 2-amino-4H-pyran and 2-benzylidene malononitrile derivatives using a basil seed as a cheap, natural, and biodegradable catalyst. Current Research in Green and Sustainable Chemistry, 2022, 5, 100327.	2.9	6
120	ATRP grafting of poly(N,Nâ€dimethylaminoâ€2â€ethyl methacrylate) onto the fattyâ€acidâ€modified agarose backbone via the "graftingâ€from†technique. Starch/Staerke, 2016, 68, 644-650.	1.1	5
121	Encoding materials for programming a temporal sequence of actions. Journal of Materials Chemistry B, 2018, 6, 1433-1448.	2.9	5
122	Synthesis of poly (amidoamine) (PAMAM) dendrimer-based chitosan for targeted drug delivery and cell therapy. Journal of Basic Research in Medical Sciences, 2018, 5, 6-13.	0.1	5
123	Tuning the Hydrolytic Behavior of Hydroxyquinoline Derivatives for Anticorrosion Applications. Chemistry of Materials, 2022, 34, 2842-2852.	3.2	5
124	Controlling Release Kinetics of Payloads from Polymer Conjugates by Hydrophobicity. Macromolecular Chemistry and Physics, 2019, 220, 1900236.	1.1	4
125	Naturally Occurring Exopolysaccharide Nanoparticles for Dye Adsorption. ACS Applied Nano Materials, 2021, 4, 10458-10466.	2.4	4
126	ATRP-tethering Anti-fouling/Anti-fogging Hydrophilic thin Hydrogel Layers on the Surface of Glass Slides. Polymer Science - Series A, 2021, 63, 705-711.	0.4	3

#	Article	IF	CITATIONS
127	A novel core@double-shell three-layer structure with dendritic fibrous morphology based on Fe ₃ O ₄ @TEA@Ni–organic framework: a highly efficient magnetic catalyst in the microwave-assisted Sonogashira coupling reaction. Nanoscale, 2022, 14, 7189-7202.	2.8	3
128	Quantification of quetiapine fumarate based on electrochemical analysis by reduced graphene oxide modified nanoâ€silica functionalized with polydopamine and gold nanostars: A novel pharmaceutical analysis strategy. Journal of Molecular Recognition, 0, , .	1.1	3
129	Tannic acid-modified tin oxide nanoparticle and aromatic polyamide: from synthesis to their application for preparation of safe p-PVC. Polymer Bulletin, 2021, 78, 1331-1352.	1.7	1
130	Green Organic Films and Coatings: Developments and Future Challenges. Mini-Reviews in Organic Chemistry, 2021, 18, .	0.6	1
131	Preparation of nanoparticles of shellac and shellac-oligomer conjugates. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 228-240.	1.2	1