Carlos Fernandes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2443255/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brain drug delivery and neurodegenerative diseases: Polymeric PLGA-based nanoparticles as a forefront platform. Ageing Research Reviews, 2022, 79, 101658.	5.0	22
2	Design and synthesis of chromone-based monoamine oxidase B inhibitors with improved drug-like properties. European Journal of Medicinal Chemistry, 2022, 239, 114507.	2.6	6
3	Antioxidant Therapy and Neurodegenerative Disorders: Lessons From Clinical Trials. , 2021, , 97-110.		4
4	4-Oxoquinolines and monoamine oxidase: When tautomerism matters. European Journal of Medicinal Chemistry, 2021, 213, 113183.	2.6	8
5	Design and characterization of Nanostructured lipid carriers (NLC) and Nanostructured lipid carrier-based hydrogels containing Passiflora edulis seeds oil. International Journal of Pharmaceutics, 2021, 600, 120444.	2.6	28
6	Mapping Chromone-3-Phenylcarboxamide Pharmacophore: <i>Quid Est Veritas</i> ?. Journal of Medicinal Chemistry, 2021, 64, 11169-11182.	2.9	9
7	Coordination Compounds As Multi-Delivery Systems for Osteoporosis. ACS Applied Materials & Interfaces, 2021, 13, 35469-35483.	4.0	10
8	Cytotoxicity and Mitochondrial Effects of Phenolic and Quinone-Based Mitochondria-Targeted and Untargeted Antioxidants on Human Neuronal and Hepatic Cell Lines: A Comparative Analysis. Biomolecules, 2021, 11, 1605.	1.8	3
9	Design of novel monoamine oxidase-B inhibitors based on piperine scaffold: Structure-activity-toxicity, drug-likeness and efflux transport studies. European Journal of Medicinal Chemistry, 2020, 185, 111770.	2.6	30
10	Antioxidant therapy, oxidative stress, and blood-brain barrier: The road of dietary antioxidants. , 2020, , 125-141.		6
11	Exploring the Multi-Target Performance of Mitochondriotropic Antioxidants against the Pivotal Alzheimer's Disease Pathophysiological Hallmarks. Molecules, 2020, 25, 276.	1.7	9
12	Multifunctionality and cytotoxicity of a layered coordination polymer. Dalton Transactions, 2020, 49, 3989-3998.	1.6	5
13	Boosting Drug Discovery for Parkinson's: Enhancement of the Delivery of a Monoamine Oxidase-B Inhibitor by Brain-Targeted PEGylated Polycaprolactone-Based Nanoparticles. Pharmaceutics, 2019, 11, 331.	2.0	11
14	Fine-tuning the neuroprotective and blood-brain barrier permeability profile of multi-target agents designed to prevent progressive mitochondrial dysfunction. European Journal of Medicinal Chemistry, 2019, 167, 525-545.	2.6	29
15	Insights into the Discovery of Novel Neuroprotective Agents: A Comparative Study between Sulfanylcinnamic Acid Derivatives and Related Phenolic Analogues. Molecules, 2019, 24, 4405.	1.7	11
16	Bioisosteric OH- to SH-replacement changes the antioxidant profile of ferulic acid. Organic and Biomolecular Chemistry, 2019, 17, 9646-9654.	1.5	6
17	Using microfluidic platforms to develop CNS-targeted polymeric nanoparticles for HIV therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 138, 111-124.	2.0	60
18	Development of a PEGylated-Based Platform for Efficient Delivery of Dietary Antioxidants Across the Blood–Brain Barrier. Bioconjugate Chemistry, 2018, 29, 1677-1689.	1.8	29

CARLOS FERNANDES

#	Article	IF	CITATIONS
19	NO and HNO donors, nitrones, and nitroxides: Past, present, and future. Medicinal Research Reviews, 2018, 38, 1159-1187.	5.0	47
20	PEGylated PLGA Nanoparticles As a Smart Carrier to Increase the Cellular Uptake of a Coumarin-Based Monoamine Oxidase B Inhibitor. ACS Applied Materials & Interfaces, 2018, 10, 39557-39569.	4.0	37
21	Desrisking the Cytotoxicity of a Mitochondriotropic Antioxidant Based on Caffeic Acid by a PEGylated Strategy. Bioconjugate Chemistry, 2018, 29, 2723-2733.	1.8	9
22	Tailoring Lipid and Polymeric Nanoparticles as siRNA Carriers towards the Blood-Brain Barrier – from Targeting to Safe Administration. Journal of NeuroImmune Pharmacology, 2017, 12, 107-119.	2.1	39
23	Photodamage and photoprotection: toward safety and sustainability through nanotechnology solutions. , 2017, , 527-565.		5
24	Crystal structures of ethyl 6-(4-methylphenyl)-4-oxo-4H-chromene-2-carboxylate and ethyl 6-(4-fluorophenyl)-4-oxo-4H-chromene-2-carboxylate. Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 8-13.	0.2	1
25	Discovery of New Chemical Entities for Old Targets: Insights on the Lead Optimization of Chromone-Based Monoamine Oxidase B (MAO-B) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 5879-5893.	2.9	87
26	Synthesis of 6-aryl/heteroaryl-4-oxo-4 H -chromene-2-carboxylic ethyl ester derivatives. Tetrahedron Letters, 2016, 57, 3006-3010.	0.7	8
27	Magnetically recyclable mesoporous iron oxide–silica materials for the degradation of acetaminophen in water under mild conditions. Polyhedron, 2016, 106, 125-131.	1.0	10
28	Cold-supported magnetically recyclable nanocatalysts: a sustainable solution for the reduction of 4-nitrophenol in water. RSC Advances, 2015, 5, 5131-5141.	1.7	60
29	Microwave-Assisted Synthesis of 5-Phenyl-2-hydroxyacetophenone Derivatives by a Green Suzuki Coupling Reaction. Journal of Chemical Education, 2015, 92, 575-578.	1.1	21
30	Influence of Hydroxypropyl- <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="M1"><mml:mrow><mml:mi mathvariant="bold-italic">β</mml:mi </mml:mrow></mml:math> -Cyclodextrin on the Photostability of Fungicide Pyrimethanil. International Journal of Photoenergy, 2014, 2014, 1-8.	1.4	15
31	Cold nanoparticles decorated on Bingel–thiol functionalized multiwall carbon nanotubes as an efficient and robust catalyst. Applied Catalysis A: General, 2014, 486, 150-158.	2.2	27
32	Tailored design of Co _x Mn _{1â^²x} Fe ₂ O ₄ nanoferrites: a new route for dual control of size and magnetic properties. Journal of Materials Chemistry C, 2014, 2, 5818-5828.	2.7	52
33	Nanotechnology and Antioxidant Therapy: An Emerging Approach for Neurodegenerative Diseases. Current Medicinal Chemistry, 2014, 21, 4311-4327.	1.2	18
34	Antioxidant therapy: Still in search of the â€~magic bullet'. Mitochondrion, 2013, 13, 427-435.	1.6	49
35	Superparamagnetic MFe ₂ O ₄ (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Route. Chemistry of Materials, 2012, 24, 1496-1504.	3.2	446