
Hyangsoo Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2443012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strategy for Efficient H ₂ Production from a Mixture of Formic Acid and Formate using <i>Operando</i> pH Measurements. ACS Sustainable Chemistry and Engineering, 2022, 10, 888-898.	3.2	10
2	Dehydrogenation of homocyclic liquid organic hydrogen carriers (LOHCs) over Pt supported on an ordered pore structure of 3-D cubic mesoporous KIT-6 silica. Applied Catalysis B: Environmental, 2022, 307, 121169.	10.8	18
3	Ce(III)â€Based Coordinationâ€Complexâ€Based Efficient Radical Scavenger for Exceptional Durability Enhancement of Polymer Application in Protonâ€Exchange Membrane Fuel Cells and Organic Photovoltaics. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
4	COX-free LOHC dehydrogenation in a heatpipe reformer highly integrated with a hydrogen burner. Chemical Engineering Journal, 2022, 449, 137679.	6.6	9
5	Highly monodisperse sub-nanometer and nanometer Ru particles confined in alkali-exchanged zeolite Y for ammonia decomposition. Applied Catalysis B: Environmental, 2021, 283, 119627.	10.8	67
6	Degradation mechanism of a Pd/Ta composite membrane: Catalytic surface fouling with inter-diffusion. Journal of Alloys and Compounds, 2021, 854, 157196.	2.8	8
7	Top-Down Syntheses of Nickel-Based Structured Catalysts for Hydrogen Production from Ammonia. ACS Applied Materials & Interfaces, 2021, 13, 597-607.	4.0	8
8	Effect of the support properties in dehydrogenation of biphenyl-based eutectic mixture as liquid organic hydrogen carrier (LOHC) over Pt/Al2O3 catalysts. Fuel, 2021, 284, 119285.	3.4	39
9	Formic acid dehydrogenation over PdNi alloys supported on N-doped carbon: synergistic effect of Pd–Ni alloying on hydrogen release. Physical Chemistry Chemical Physics, 2021, 23, 11515-11527.	1.3	16
10	Investigation of a hydrogen generator with the heat management module utilizing liquidâ€gas organic phase change material. International Journal of Energy Research, 2021, 45, 10378-10392.	2.2	6
11	Weakly Solvating Solution Enables Chemical Prelithiation of Graphite–SiO _{<i>x</i>} Anodes for High-Energy Li-Ion Batteries. Journal of the American Chemical Society, 2021, 143, 9169-9176.	6.6	106
12	Development of 3D open-cell structured Co-Ni catalysts by pulsed electrodeposition for hydrolysis of sodium borohydride. Applied Surface Science, 2021, 554, 149530.	3.1	14
13	Hydrogen production from homocyclic liquid organic hydrogen carriers (LOHCs): Benchmarking studies and energy-economic analyses. Energy Conversion and Management, 2021, 239, 114124.	4.4	43
14	Autothermal recirculating reactor (ARR) with Cu-BN composite as a stable reactor material for sustainable hydrogen release from ammonia. Journal of Power Sources, 2021, 506, 230081.	4.0	10
15	An efficient process for sustainable and scalable hydrogen production from green ammonia. Renewable and Sustainable Energy Reviews, 2021, 152, 111562.	8.2	38
16	A compact catalytic foam reactor for decomposition of ammonia by the Joule-heating mechanism. Chemical Engineering Journal, 2021, 426, 130802.	6.6	36
17	Challenges and opportunities for using formate to store, transport, and use hydrogen. Journal of Energy Chemistry, 2020, 41, 216-224.	7.1	65
18	Facile synthesis of micro-sized Ni–Al alloy powders through low-temperature chemical alloying. Journal of Alloys and Compounds, 2020, 815, 152392.	2.8	4

Hyangsoo Jeong

#	Article	IF	CITATIONS
19	A study on hydrogen uptake and release of a eutectic mixture of biphenyl and diphenyl ether. Journal of Energy Chemistry, 2020, 42, 11-16.	7.1	20
20	Unconventional hydrogen permeation behavior of Pd/BCC composite membranes and significance of surface reaction kinetics. Journal of Membrane Science, 2020, 595, 117506.	4.1	11
21	Compact ATR–WGS-Integrated Bioethanol Fuel Processor for Portable and On-board Fuel Cell Applications. ACS Sustainable Chemistry and Engineering, 2020, 8, 15611-15619.	3.2	5
22	Innentitelbild: Molecularly Tailored Lithium–Arene Complex Enables Chemical Prelithiation of Highâ€Capacity Lithiumâ€Ion Battery Anodes (Angew. Chem. 34/2020). Angewandte Chemie, 2020, 132, 14270-14270.	1.6	0
23	In situ exsolution of Rh nanoparticles on a perovskite oxide surface: Efficient Rh catalysts for Dry reforming. Korean Journal of Chemical Engineering, 2020, 37, 1401-1410.	1.2	6
24	A catalytic composite membrane reactor system for hydrogen production from ammonia using steam as a sweep gas. Journal of Membrane Science, 2020, 614, 118483.	4.1	26
25	Molecularly Tailored Lithium–Arene Complex Enables Chemical Prelithiation of Highâ€Capacity Lithiumâ€Ion Battery Anodes. Angewandte Chemie - International Edition, 2020, 59, 14473-14480.	7.2	127
26	Development of an Autothermal Formate-Based Hydrogen Generator: From Optimization of Formate Dehydrogenation Conditions to Thermal Integration with Fuel Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 9846-9856.	3.2	21
27	Development of porous nickel catalysts by low-temperature Ni–Al chemical alloying and post selective Al leaching, and their application for ammonia decomposition. International Journal of Hydrogen Energy, 2020, 45, 19181-19191.	3.8	16
28	Surface area enhancement of nickel foam by low-temperature chemical alloying/dealloying and its application for sodium borohydride hydrolysis. Journal of Alloys and Compounds, 2020, 843, 155759.	2.8	14
29	High purity hydrogen production via aqueous phase reforming of xylose over small Pt nanoparticles on a γ-Al2O3 support. International Journal of Hydrogen Energy, 2020, 45, 13848-13861.	3.8	15
30	Molecularly Tailored Lithium–Arene Complex Enables Chemical Prelithiation of High apacity Lithiumâ€Ion Battery Anodes. Angewandte Chemie, 2020, 132, 14581-14588.	1.6	20
31	Pd 2+ â€Initiated Formic Acid Decomposition: Plausible Pathways for Câ€H Activation of Formate. ChemPhysChem, 2019, 20, 1382-1391.	1.0	5
32	A High-Capacity, Reversible Liquid Organic Hydrogen Carrier: H ₂ -Release Properties and an Application to a Fuel Cell. ACS Sustainable Chemistry and Engineering, 2019, 7, 1185-1194.	3.2	55
33	A viable membrane reactor option for sustainable hydrogen production from ammonia. Journal of Power Sources, 2018, 400, 518-526.	4.0	43
34	Ammonia as an efficient COX-free hydrogen carrier: Fundamentals and feasibility analyses for fuel cell applications. Applied Energy, 2018, 224, 194-204.	5.1	82
35	Regioselective Termination Reagents for Ring-Opening Alkyne Metathesis Polymerization. Journal of the American Chemical Society, 2017, 139, 15509-15514.	6.6	32
36	Synthesis of Alternating <i>trans</i> -AB Copolymers through Ring-Opening Metathesis Polymerization Initiated by Molybdenum Alkylidenes. Journal of the American Chemical Society, 2015, 137, 2239-2242.	6.6	29

Hyangsoo Jeong

#	Article	IF	CITATIONS
37	Stereospecific Ring-Opening Metathesis Polymerization (ROMP) of <i>endo</i> -Dicyclopentadiene by Molybdenum and Tungsten Catalysts. Macromolecules, 2015, 48, 2480-2492.	2.2	75
38	Stereoselective Ring-Opening Metathesis Polymerization (ROMP) of Methyl- <i>N</i> -(1-phenylethyl)-2-azabicyclo[2.2.1]hept-5-ene-3-carboxylate by Molybdenum and Tungsten Initiators. Macromolecules, 2015, 48, 2006-2012.	2.2	24
39	Formation of Alternating <i>trans</i> - A - <i>alt</i> - B Copolymers through Ring-Opening Metathesis Polymerization Initiated by Molybdenum Imido Alkylidene Complexes. Organometallics, 2015, 34, 5136-5145.	1.1	21
40	Synthesis of Molybdenum and Tungsten Alkylidene Complexes that Contain a <i>tert</i> -Butylimido Ligand. Organometallics, 2015, 34, 4408-4418.	1.1	21
41	Z-Selective Ring-Opening Metathesis Polymerization of 3-Substituted Cyclooctenes by Monoaryloxide Pyrrolide Imido Alkylidene (MAP) Catalysts of Molybdenum and Tungsten. Organometallics, 2013, 32, 4843-4850.	1.1	58
42	Syntheses of Tungsten <i>tert</i> -Butylimido and Adamantylimido Alkylidene Complexes Employing Pyridinium Chloride As the Acid. Organometallics, 2012, 31, 6522-6525.	1.1	25