Barry B Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2442508/publications.pdf Version: 2024-02-01

RADDY RIFE

#	Article	IF	CITATIONS
1	Detection and discrimination of achromatic contrast: A ganglion cell perspective. Journal of Vision, 2022, 22, 11.	0.3	1
2	A quantitative description of macaque ganglion cell responses to natural scenes: the interplay of time and space. Journal of Physiology, 2021, 599, 3169-3193.	2.9	7
3	Sensitivity to chromatic and luminance contrast and its neuronal substrates. Current Opinion in Behavioral Sciences, 2019, 30, 156-162.	3.9	6
4	The spatial structure of cone-opponent receptive fields in macaque retina. Vision Research, 2018, 151, 141-151.	1.4	7
5	Cone Opponency: An Efficient Way of Transmitting Chromatic Information. , 2016, , 105-132.		1
6	Macaque retinal ganglion cell responses to visual patterns: harmonic composition, noise, and psychophysical detectability. Journal of Neurophysiology, 2016, 115, 2976-2988.	1.8	7
7	Dependence of chromatic responses in V1 on visual field eccentricity and spatial frequency: an fMRI study. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2016, 33, A53.	1.5	12
8	Mixing of Chromatic and Luminance Retinal Signals in Primate Area V1. Cerebral Cortex, 2015, 25, 1920-1937.	2.9	27
9	Alouatta Trichromatic Color Vision: Cone Spectra and Physiological Responses Studied with Microspectrophotometry and Single Unit Retinal Electrophysiology. PLoS ONE, 2014, 9, e113321.	2.5	10
10	Distribution and specificity of S-cone ("blue coneâ€) signals in subcortical visual pathways. Visual Neuroscience, 2014, 31, 177-187.	1.0	31
11	Color coding in the primate visual pathway: a historical view. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A103.	1.5	16
12	Independence and interaction of luminance and chromatic contributions to spatial hyperacuity performance. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A394.	1.5	1
13	Eye Movements and the Neural Basis of Context Effects on Visual Sensitivity. Journal of Neuroscience, 2014, 34, 8119-8129.	3.6	13
14	Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A223.	1.5	44
15	Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A314.	1.5	19
16	Luminance and chromatic contributions to a hyperacuity task: Isolation by contrast polarity and target separation. Vision Research, 2012, 56, 28-37.	1.4	6
17	Simultaneous chromatic and luminance human electroretinogram responses. Journal of Physiology, 2012, 590, 3141-3154.	2.9	26

Responses of Primate Retinal Ganglion Cells to Perimetric Stimuli. , 2011, 52, 764.

BARRY B LEE

#	Article	IF	CITATIONS
19	Segregation of chromatic and luminance signals using a novel grating stimulus. Journal of Physiology, 2011, 589, 59-73.	2.9	26
20	Visual pathways and psychophysical channels in the primate. Journal of Physiology, 2011, 589, 41-47.	2.9	72
21	Author Response: Frequency-Doubling Technology and Parasol Cells. , 2011, 52, 3759.		5
22	Retinal connectivity and primate vision. Progress in Retinal and Eye Research, 2010, 29, 622-639.	15.5	126
23	Macaque ganglion cell responses to probe stimuli on modulated backgrounds. Journal of Vision, 2010, 10, 26-26.	0.3	0
24	The chromatic input to cells of the magnocellular pathway of primates. Journal of Vision, 2009, 9, 15-15.	0.3	27
25	Chromatic adaptation in red–green cone-opponent retinal ganglion cells of the macaque. Vision Research, 2008, 48, 2625-2632.	1.4	0
26	Chromatic temporal integration and retinal eccentricity: Psychophysics, neurometric analysis and cortical pooling. Vision Research, 2008, 48, 2657-2662.	1.4	22
27	Sequential processing in vision: The interaction of sensitivity regulation and temporal dynamics. Vision Research, 2008, 48, 2649-2656.	1.4	36
28	Neural models and physiological reality. Visual Neuroscience, 2008, 25, 231-241.	1.0	12
29	Guest Editors' Foreword: Proceedings of the 19th Biennial Symposium of the International Colour Vision Society. Held July 2007 Belém, Brazil. Visual Neuroscience, 2008, 25, 229-230.	1.0	0
30	The evolution of concepts of color vision. Neurociências, 2008, 4, 209-224.	0.0	7
31	The temporal properties of the response of macaque ganglion cells and central mechanisms of flicker detection. Journal of Vision, 2007, 7, 1.	0.3	73
32	Comparative Anatomy and Physiology of the Primate Retina. , 2006, , 127-160.		12
33	Specificity of Cone Inputs to Macaque Retinal Ganglion Cells. Journal of Neurophysiology, 2006, 95, 837-849.	1.8	109
34	Suppressive Surrounds and Contrast Gain in Magnocellular-Pathway Retinal Ganglion Cells of Macaque. Journal of Neuroscience, 2006, 26, 8715-8726.	3.6	116
35	Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input?. Visual Neuroscience, 2006, 23, 441-446.	1.0	28
36	Comparison of Ganglion Cell Signals and Psychophysical Localization of Moving Targets Can Help Define Central Motion Mechanisms. Perception, 2005, 34, 975-981.	1.2	6

BARRY B LEE

#	Article	IF	CITATIONS
37	Chromatic Organization of Ganglion Cell Receptive Fields in the Peripheral Retina. Journal of Neuroscience, 2005, 25, 4527-4539.	3.6	97
38	Morphology and physiology of primate M- and P-cells. Progress in Brain Research, 2004, 144, 21-46.	1.4	69
39	Chromatic input to cells of the magnocellular pathway: Mean chromaticity and the relative phase of modulated lights. Visual Neuroscience, 2004, 21, 309-314.	1.0	10
40	Paths to colour in the retina. Australasian journal of optometry, The, 2004, 87, 239-248.	1.3	45
41	The spatiotemporal precision of ganglion cell signals: a comparison of physiological and psychophysical performance with moving gratings. Vision Research, 2004, 44, 19-33.	1.4	42
42	A single mechanism for both luminance and chromatic grating vernier tasks: Evidence from temporal summation. Visual Neuroscience, 2004, 21, 315-320.	1.0	8
43	Dynamics of sensitivity regulation in primate outer retina: The horizontal cell network. Journal of Vision, 2003, 3, 5.	0.3	33
44	Structure of Receptive Field Centers of Midget Retinal Ganglion Cells. , 2003, , 63-70.		3
45	Coding of Position of Achromatic and Chromatic Edges by Retinal Ganglion Cells. , 2003, , 79-88.		7
46	Modulation sensitivity of ganglion cells in peripheral retina of macaque. Vision Research, 2002, 42, 2893-2898.	1.4	51
47	Transient cells can be neurometrically sustained: the positional accuracy of retinal signals to moving targets. Journal of Vision, 2002, 2, 3-3.	0.3	23
48	Lichtenberg's Letter to Goethe on ?F�rbige Schatten?: G. C. Lichtenberg. Color Research and Application, 2002, 27, 300-303.	1.6	11
49	An examination of physiological mechanisms underlying the frequency-doubling illusion. Investigative Ophthalmology and Visual Science, 2002, 43, 3590-9.	3.3	100
50	Primate Horizontal Cell Dynamics: An Analysis of Sensitivity Regulation in the Outer Retina. Journal of Neurophysiology, 2001, 85, 545-558.	1.8	66
51	Colour science in G�ttingen in the 18th Century. Color Research and Application, 2001, 26, S25-S27.	1.6	1
52	Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature, 2001, 410, 933-936.	27.8	170
53	Visual responses of ganglion cells of a Newâ€World primate, the capuchin monkey, Cebus apella. Journal of Physiology, 2000, 528, 573-590.	2.9	43
54	Chromatic and luminance contributions to a hyperacuity task. Vision Research, 2000, 40, 817-832.	1.4	11

BARRY B LEE

#	Article	IF	CITATIONS
55	Ganglion cells of a short-wavelength-sensitive cone pathway in New World monkeys: Morphology and physiology. Visual Neuroscience, 1999, 16, 333-343.	1.0	60
56	Receptive fields of primate retinal ganglion cells studied with a novel technique. Visual Neuroscience, 1998, 15, 161-175.	1.0	105
57	Rod inputs to macaque ganglion cells. Vision Research, 1997, 37, 2813-2828.	1.4	137
58	Receptive field structure in the primate retina. Vision Research, 1996, 36, 631-644.	1.4	189
59	The time course of adaptation in macaque retinal ganglion cells. Vision Research, 1996, 36, 913-931.	1.4	85
60	Topography of ganglion cells and photoreceptors in the retina of a New World monkey: The marmoset <i>Callithrix jacchus</i> . Visual Neuroscience, 1996, 13, 335-352.	1.0	132
61	The spatial precision of macaque ganglion cell responses in relation to vernier acuity of human observers. Vision Research, 1995, 35, 2743-2758.	1.4	64
62	The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature, 1994, 367, 731-735.	27.8	658
63	Responses to pulses and sinusoids in macaque ganglion cells. Vision Research, 1994, 34, 3081-3096.	1.4	157
64	Responses of macaque ganglion cells and human observers to compound periodic waveforms. Vision Research, 1993, 33, 1997-2011.	1.4	114
65	On the Relation between Cellular Sensitivity and Psychophysical Detection. , 1991, , 105-115.		9
66	Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1990, 7, 2223.	1.5	432