
Juan A SÃ;nchez-Margallo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2442383/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Correlating Personal Resourcefulness and Psychomotor Skills: An Analysis of Stress, Visual Attention and Technical Metrics. Sensors, 2022, 22, 837.	3.8	2
2	Use of a new device for gasless endosurgery in a laparoscopic diaphragmatic hernia repair ex vivo canine model: A preâ€clinical study. Veterinary Medicine and Science, 2022, 8, 460-468.	1.6	3
3	Comparative Study of the Influence of Three-Dimensional Versus Two-Dimensional Urological Laparoscopy on Surgeons' Surgical Performance and Ergonomics: A Systematic Review and Meta-Analysis. Journal of Endourology, 2021, 35, 123-137.	2.1	6
4	Blockâ€matchingâ€based registration to evaluate ultrasound visibility of percutaneous needles in liverâ€mimicking phantoms. Medical Physics, 2021, 48, 7602.	3.0	2
5	Application of Mixed Reality in Medical Training and Surgical Planning Focused on Minimally Invasive Surgery. Frontiers in Virtual Reality, 2021, 2, .	3.7	21
6	Comparative Study of the Use of Different Sizes of an Ergonomic Instrument Handle for Laparoscopic Surgery. Applied Sciences (Switzerland), 2020, 10, 1526.	2.5	12
7	Comparative Assessment Between 3D and Conventional 2D Imaging Systems in Laparoscopic Practice. IFMBE Proceedings, 2020, , 703-710.	0.3	0
8	Measuring Workload and Performance of Surgeons Using Body Sensors of Smartwatches. Springer Proceedings in Complexity, 2020, , 67-74.	0.3	1
9	Identification of intra-abdominal lymphatics in canine carcasses by laparoscopic fluorescence lymphography with intradermal and intrapopliteal ICG administration. PLoS ONE, 2020, 15, e0241992.	2.5	1
10	A Methodical Quantification of Needle Visibility and Echogenicity in Ultrasound Images. Ultrasound in Medicine and Biology, 2019, 45, 998-1009.	1.5	14
11	European association for endoscopic surgery (EAES) consensus statement on single-incision endoscopic surgery. Surgical Endoscopy and Other Interventional Techniques, 2019, 33, 996-1019.	2.4	51
12	The use of 3D laparoscopic imaging systems in surgery: EAES consensus development conference 2018. Surgical Endoscopy and Other Interventional Techniques, 2019, 33, 3251-3274.	2.4	75
13	Assessment of Postural Ergonomics and Surgical Performance in Laparoendoscopic Single-Site Surgery Using a Handheld Robotic Device. Surgical Innovation, 2018, 25, 208-217.	0.9	10
14	Interpretation of motion analysis of laparoscopic instruments based on principal component analysis in box trainer settings. Surgical Endoscopy and Other Interventional Techniques, 2018, 32, 3096-3107.	2.4	6
15	Handheld Devices for Laparoscopic Surgery. , 2018, , .		10
16	Anthropomorphic liver phantom with flow for multimodal image-guided liver therapy research and training. International Journal of Computer Assisted Radiology and Surgery, 2018, 13, 61-72.	2.8	18
17	Compliant joint echogenicity in ultrasound images: towards highly visible steerable needles. , 2018, , .		1
18	Use of natural user interfaces for image navigation during laparoscopic surgery: initial experience. Minimally Invasive Therapy and Allied Technologies, 2017, 26, 253-261.	1.2	18

#	Article	IF	CITATIONS
19	Initial experience using a robotic-driven laparoscopic needle holder with ergonomic handle: assessment of surgeons' task performance and ergonomics. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 2069-2077.	2.8	23
20	Analysis of Surgeons' Muscle Activity During the Use of a Handheld Robotic Instrument in Laparoendoscopic Single-Site Surgery. Advances in Intelligent Systems and Computing, 2017, , 3-15.	0.6	1
21	Objective assessment based on motion-related metrics and technical performance in laparoscopic suturing. International Journal of Computer Assisted Radiology and Surgery, 2017, 12, 307-314.	2.8	34
22	Laparoscopic Pancreas Surgery: Image Guidance Solutions. , 2017, , .		1
23	Laparoscopic Video and Ultrasounds Image Processing in Minimally Invasive Pancreatic Surgeries. Smart Innovation, Systems and Technologies, 2016, , 333-343.	0.6	0
24	Construct validity of a video-tracking system based on orthogonal cameras approach for objective assessment of laparoscopic skills. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 2283-2293.	2.8	16
25	Muscle activity and hand motion in veterinarians performing laparoscopic training tasks with a box trainer. American Journal of Veterinary Research, 2016, 77, 186-193.	0.6	7
26	Head Stabilization during Minimal Invasive Surgery Tasks: An Uncontrolled Manifold Analysis. Procedia Manufacturing, 2015, 3, 1434-1441.	1.9	2
27	An Analysis of Skills Acquisition During a Training Program for Experienced Laparoscopists in Laparoendoscopic Single-Site Surgery. Surgical Innovation, 2014, 21, 320-326.	0.9	3
28	Objective analysis of surgeons' ergonomy during laparoendoscopic single-site surgery through the use of surface electromyography and a motion capture data glove. Surgical Endoscopy and Other Interventional Techniques, 2014, 28, 1314-1320.	2.4	41
29	Systems and technologies for objective evaluation of technical skills in laparoscopic surgery. Minimally Invasive Therapy and Allied Technologies, 2014, 23, 40-51.	1.2	17
30	Application of a motion capture data glove for hand and wrist ergonomic analysis during laparoscopy. Minimally Invasive Therapy and Allied Technologies, 2014, 23, 350-356.	1.2	10
31	A method to assess upper-body postural variability in laparoscopic surgery. , 2014, , .		1
32	Usefulness of an Optical Tracking System in Laparoscopic Surgery for Motor Skills Assessment. CirugÃa Española (English Edition), 2014, 92, 421-428.	0.1	13
33	Utilidad de un sistema de seguimiento óptico de instrumental en cirugÃa laparoscópica para evaluación de destrezas motoras. CirugÃa Española, 2014, 92, 421-428.	0.2	14
34	EVA: Endoscopic Video Analysis of the Surgical Scene for the Assessment of MIS Psychomotor Skills. IFMBE Proceedings, 2014, , 52-56.	0.3	0
35	EVA: Laparoscopic Instrument Tracking Based on Endoscopic Video Analysis for Psychomotor Skills Assessment. Surgical Endoscopy and Other Interventional Techniques, 2013, 27, 1029-1039.	2.4	86
36	Ergonomic Analysis of Muscle Activity in the Forearm and Back Muscles During Laparoscopic Surgery. Surgical Laparoscopy, Endoscopy and Percutaneous Techniques, 2013, 23, 203-207.	0.8	16

#	Article	IF	CITATIONS
37	Technical Evaluation of a Third Generation Optical Pose Tracker for Motion Analysis and Image-Guided Surgery. Lecture Notes in Computer Science, 2013, , 75-82.	1.3	3
38	Decomposition and analysis of laparoscopic suturing task using tool-motion analysis (TMA): improving the objective assessment. International Journal of Computer Assisted Radiology and Surgery, 2012, 7, 305-313.	2.8	25
39	Methods and Tools for Objective Assessment of Psychomotor Skills in Laparoscopic Surgery. Journal of Surgical Research, 2011, 171, e81-e95.	1.6	124
40	Anatomical changes due to pneumoperitoneum analyzed by MRI: an experimental study in pigs. Surgical and Radiologic Anatomy, 2011, 33, 389-396.	1.2	39
41	Video-based assistance system for training in minimally invasive surgery. Minimally Invasive Therapy and Allied Technologies, 2011, 20, 197-205.	1.2	17
42	Ergonomic Assessment of Hand Movements in Laparoscopic Surgery Using the CyberGlove®. , 2010, , 121-128.		15
43	Ergonomics in Laparoscopic Surgery. , 0, , .		13
44	Introductory Chapter: Addressing the Challenges of Laparoscopic Surgery. , 0, , .		3
45	Wearable Technology for Assessment and Surgical Assistance in Minimally Invasive Surgery. , 0, , .		0