Mikhail V Korobov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2442206/publications.pdf

Version: 2024-02-01

393982 454577 1,427 30 19 30 citations g-index h-index papers 30 30 30 1737 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Organic Solvent Dispersions of Single-Walled Carbon Nanotubes:  Toward Solutions of Pristine Nanotubes. Journal of Physical Chemistry B, 2000, 104, 8911-8915.	1.2	592
2	Calorimetric Studies of Solvates of C60 and C70 with Aromatic Solvents. Journal of Physical Chemistry B, 1999, 103, 1339-1346.	1.2	95
3	C60Â-Bromobenzene Solvate:Â Crystallographic and Thermochemical Studies and Their Relationship to C60Solubility in Bromobenzene. Journal of Physical Chemistry B, 1998, 102, 3712-3717.	1.2	53
4	Selective Intercalation of Graphite Oxide by Methanol in Water/Methanol Mixtures. Journal of Physical Chemistry C, 2013, 117, 1963-1968.	1.5	51
5	Structural Characteristics of Aqueous Dispersions of Detonation Nanodiamond and Their Aggregate Fractions as Revealed by Small-Angle Neutron Scattering. Journal of Physical Chemistry C, 2015, 119, 794-802.	1.5	50
6	Improving the dispersity of detonation nanodiamond: differential scanning calorimetry as a new method of controlling the aggregation state of nanodiamond powders. Nanoscale, 2013, 5, 1529.	2.8	48
7	Sorption of polar organic solvents and water by graphite oxide: Thermodynamic approach. Carbon, 2016, 102, 297-303.	5 . 4	47
8	Solvation Free Energies of the Fullerenes C60and C70in the Framework of Polarizable Continuum Model. Journal of Physical Chemistry B, 2003, 107, 9692-9700.	1.2	43
9	Activated graphene as a material for supercapacitor electrodes: effects of surface area, pore size distribution and hydrophilicity. Physical Chemistry Chemical Physics, 2019, 21, 17901-17912.	1.3	43
10	Elemental analysis of nanodiamonds by inductively-coupled plasma atomic emission spectroscopy. Carbon, 2014, 74, 1-13.	5 . 4	41
11	Swelling of graphene oxide membranes in alcohols: effects of molecule size and air ageing. Journal of Materials Chemistry A, 2019, 7, 11331-11337.	5 . 2	38
12	Aggregate structure of "single-nano buckydiamond―in gel and dried powder by differential scanning calorimetry and nitrogen adsorption. Diamond and Related Materials, 2010, 19, 665-671.	1.8	33
13	Non-reversible solvatochromism in N-methyl-2-pyrrolidone/toluene mixed solutions of fullerene C60. Chemical Physics Letters, 2013, 556, 178-181.	1.2	33
14	Delamination of graphite oxide in a liquid upon cooling. Nanoscale, 2015, 7, 12625-12630.	2.8	33
15	State of aggregation and toxicity of aqueous fullerene solutions. Applied Surface Science, 2019, 483, 69-75.	3.1	29
16	Multilayered intercalation of 1-octanol into Brodie graphite oxide. Nanoscale, 2017, 9, 6929-6936.	2.8	27
17	Absorption spectra of nanodiamond aqueous dispersions by optical absorption and optoacoustic spectroscopies. Photoacoustics, 2018, 12, 55-66.	4.4	23
18	Approach to the Assessment of Size-Dependent Thermal Properties of Disperse Solutions: Time-Resolved Photothermal Lensing of Aqueous Pristine Fullerenes C ₆₀ and C ₇₀ . Journal of Physical Chemistry C, 2016, 120, 28270-28287.	1.5	21

#	Article	IF	CITATIONS
19	Quasi-equilibrium distribution of pristine fullerenes C60 and C70 in a water–toluene system. Carbon, 2017, 111, 191-197.	5.4	20
20	Photothermal spectroscopy: A promising tool for nanofluids. Journal of Applied Physics, 2020, 128, .	1.1	20
21	Green and rapid preparation of long-term stable aqueous dispersions of fullerenes and endohedral fullerenes: The pros and cons of an ultrasonic probe. Ultrasonics Sonochemistry, 2021, 73, 105533.	3.8	19
22	Properties of Graphite Oxide Powders and Membranes as Revealed by Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 22750-22759.	1.5	18
23	Graphite oxide swelling in molten sugar alcohols and their aqueous solutions. Carbon, 2018, 140, 157-163.	5.4	15
24	Swollen Structures of Brodie Graphite Oxide as Solid Solvates. Journal of Physical Chemistry C, 2020, 124, 23410-23418.	1.5	9
25	Mobility of liquids intercalated into the interplane space of graphite oxide as revealed by a combination of 19F NMR, 1H NMR and EPR spin probe methods. Physical Chemistry Chemical Physics, 2020, 22, 19969-19974.	1.3	7
26	Photothermal and Heat-Transfer Properties of Aqueous Detonation Nanodiamonds by Photothermal Microscopy and Transient Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 7808-7823.	1.5	7
27	Optimization of the solvent-exchange process for high-yield synthesis of aqueous fullerene dispersions. Nanosystems: Physics, Chemistry, Mathematics, 2018, , 41-45.	0.2	4
28	Thermal Conductivity of Detonation Nanodiamond Hydrogels and Hydrosols by Direct Heat Flux Measurements. Gels, 2021, 7, 248.	2.1	4
29	Aqueous Dispersions of Unmodified Y@C82 (C2v) Endohedral Metallofullerene. ChemistrySelect, 2017, 2, 8936-8940.	0.7	3
30	Why are Solutions of C ₆₀ â€Piperazine Purple at pH 11?. Fullerenes Nanotubes and Carbon Nanostructures, 2007, 15, 267-277.	1.0	1