Tatyana T Tabakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2442054/publications.pdf Version: 2024-02-01

ΤΑΤΥΛΝΑ Τ ΤΑΒΑΚΟΎΑ

#	Article	IF	CITATIONS
1	FTIR Study of the Low-Temperature Water–Gas Shift Reaction on Au/Fe2O3 and Au/TiO2 Catalysts. Journal of Catalysis, 1999, 188, 176-185.	6.2	419
2	Low-temperature water-gas shift reaction over Au/CeO2 catalysts. Catalysis Today, 2002, 72, 51-57.	4.4	417
3	FTIR study of low-temperature water-gas shift reaction on gold/ceria catalyst. Applied Catalysis A: General, 2003, 252, 385-397.	4.3	239
4	Low-Temperature Water–Gas Shift Reaction over Au/α-Fe2O3. Journal of Catalysis, 1996, 158, 354-355.	6.2	222
5	Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction. Applied Catalysis A: General, 2005, 281, 149-155.	4.3	194
6	Low-temperature water-gas shift reaction on Auα-Fe2O3 catalyst. Applied Catalysis A: General, 1996, 134, 275-283.	4.3	183
7	Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3–ZnO, Au/Fe2O3–ZrO2 catalysts for the WGS reaction. Applied Catalysis A: General, 2000, 202, 91-97.	4.3	164
8	Activity and deactivation of Au/TiO2 catalyst in CO oxidation. Journal of Molecular Catalysis A, 2004, 213, 235-240.	4.8	164
9	Gold, silver and copper catalysts supported on TiO2 for pure hydrogen production. Catalysis Today, 2002, 75, 169-175.	4.4	156
10	Catalytic performance and characterization of Au/doped-ceria catalysts for the preferential CO oxidation reaction. Journal of Catalysis, 2008, 256, 237-247.	6.2	145
11	Au/α-Fe2O3 catalyst for water–gas shift reaction prepared by deposition–precipitation. Applied Catalysis A: General, 1998, 169, 9-14.	4.3	137
12	Gold catalysts supported on mesoporous zirconia for low-temperature water–gas shift reaction. Applied Catalysis B: Environmental, 2006, 63, 178-186.	20.2	136
13	Gold catalysts supported on mesoporous titania for low-temperature water–gas shift reaction. Applied Catalysis A: General, 2004, 270, 135-141.	4.3	132
14	A comparative study of nanosized IB/ceria catalysts for low-temperature water-gas shift reaction. Applied Catalysis A: General, 2006, 298, 127-143.	4.3	126
15	Effect of synthesis procedure on the low-temperature WGS activity of Au/ceria catalysts. Applied Catalysis B: Environmental, 2004, 49, 73-81.	20.2	121
16	A comparative study of ceria-supported gold and copper oxide catalysts for preferential CO oxidation reaction. Chemical Engineering Journal, 2006, 124, 41-45.	12.7	102
17	Nanosize gold catalysts promoted by vanadium oxide supported on titania and zirconia for complete benzene oxidation. Applied Catalysis A: General, 2001, 209, 291-300.	4.3	93
18	Quantitative determination of gold active sites by chemisorption and by infrared measurements of adsorbed CO. Journal of Catalysis, 2006, 237, 431-434.	6.2	88

#	Article	IF	CITATIONS
19	CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: Part 1. Impact of the support composition on the performance for the preferential CO oxidation reaction. Applied Catalysis B: Environmental, 2011, 101, 256-265.	20.2	88
20	Mesoporous and nanostructured CeO2 as supports of nano-sized gold catalysts for low-temperature water-gas shift reaction. Catalysis Today, 2008, 131, 203-210.	4.4	86
21	Effect of additives on the WCS activity of combustion synthesized CuO/CeO2 catalysts. Catalysis Communications, 2007, 8, 101-106.	3.3	81
22	A comparative study of hydrogen photocatalytic production from glycerol and propan-2-ol on M/TiO 2 systems (M=Au, Pt, Pd). Catalysis Today, 2017, 280, 58-64.	4.4	71
23	Total oxidation of toluene over noble metal based Ce, Fe and Ni doped titanium oxides. Applied Catalysis B: Environmental, 2014, 146, 138-146.	20.2	69
24	Preferential CO oxidation in H2-rich gas mixtures over Au/doped ceria catalysts. Catalysis Today, 2008, 138, 239-243.	4.4	65
25	Effect of phosphorus concentration and method of preparation on the structure of the oxide form of phosphorus-nickel-tungsten/alumina hydrotreating catalysts. Applied Catalysis A: General, 1997, 161, 105-119.	4.3	64
26	Pure hydrogen production on a new gold–thoria catalyst for fuel cell applications. Applied Catalysis B: Environmental, 2006, 63, 94-103.	20.2	58
27	Deactivation of nanosize gold supported on zirconia in CO oxidation. Catalysis Communications, 2004, 5, 537-542.	3.3	57
28	Surface and Inner Defects in Au/CeO ₂ WGS Catalysts: Relation between Raman Properties, Reactivity and Morphology. Chemistry - A European Journal, 2011, 17, 4356-4361.	3.3	54
29	Gold nanoparticles supported on ceria-modified mesoporous titania as highly active catalysts for low-temperature water-gas shift reaction. Catalysis Today, 2007, 128, 223-229.	4.4	52
30	CO-free hydrogen production over Au/CeO2–Fe2O3 catalysts: Part 2. Impact of the support composition on the performance in the water-gas shift reaction. Applied Catalysis B: Environmental, 2011, 101, 266-274.	20.2	51
31	Highly active copper catalyst for low-temperature water-gas shift reaction prepared via a Cu-Mn spinel oxide precursor. Applied Catalysis A: General, 2013, 451, 184-191.	4.3	50
32	Complete benzene oxidation over mono and bimetallic Au–Pd catalysts supported on Fe-modified ceria. Chemical Engineering Journal, 2015, 260, 133-141.	12.7	47
33	Gold catalysts supported on Y-modified ceria for CO-free hydrogen production via PROX. Applied Catalysis B: Environmental, 2016, 188, 154-168.	20.2	47
34	Influence of the preparation method and dopants nature on the WGS activity of gold catalysts supported on doped by transition metals ceria. Applied Catalysis B: Environmental, 2013, 136-137, 70-80.	20.2	45
35	NO reduction by CO over gold catalysts supported on Fe-loaded ceria. Applied Catalysis B: Environmental, 2015, 174-175, 176-184.	20.2	43
36	Nanosized gold catalysts supported on ceria and ceria-alumina for WGS reaction: Influence of the preparation method. Applied Catalysis A: General, 2007, 333, 153-160.	4.3	41

#	Article	IF	CITATIONS
37	Spectroscopic Analysis of Au–V-Based Catalysts and Their Activity in the Catalytic Removal of Diesel Soot Particulates. Journal of Catalysis, 2002, 209, 515-527.	6.2	40
38	CO-Free Hydrogen Production for Fuel Cell Applications over Au/CeO ₂ Catalysts: FTIR Insight into the Role of Dopant. Journal of Physical Chemistry A, 2010, 114, 3909-3915.	2.5	40
39	Gold catalysts for low temperature water-gas shift reaction: Effect of ZrO2 addition to CeO2 support. Applied Catalysis B: Environmental, 2012, 125, 507-515.	20.2	38
40	Impact of Ce–Fe synergism on the catalytic behaviour of Au/CeO ₂ –FeO _x /Al ₂ O ₃ for pure H ₂ production. Catalysis Science and Technology, 2013, 3, 779-787.	4.1	38
41	Total oxidation of volatile organic compounds on Au/Ce–Ti–O and Au/Ce–Ti–Zr–O mesoporous catalysts. Journal of Materials Science, 2009, 44, 6654-6662.	3.7	29
42	Recent Advances in Design of Gold-Based Catalysts for H2 Clean-Up Reactions. Frontiers in Chemistry, 2019, 7, 517.	3.6	27
43	Alumina supported Au/Y-doped ceria catalysts for pure hydrogen production via PROX. International Journal of Hydrogen Energy, 2019, 44, 233-245.	7.1	27
44	Nano-gold catalysts on Fe-modified ceria for pure hydrogen production via WGS and PROX: Effect of preparation method and Fe-doping on the structural and catalytic properties. Applied Catalysis A: General, 2013, 467, 76-90.	4.3	24
45	Structure–reactivity relationship in Co ₃ O ₄ promoted Au/CeO ₂ catalysts for the CH ₃ OH oxidation reaction revealed by in situ FTIR and operando EXAFS studies. Journal of Materials Chemistry A, 2017, 5, 2083-2094.	10.3	23
46	Gold nanoparticles supported on ceria-modified mesoporous–macroporous binary metal oxides as highly active catalysts for low-temperature water–gas shift reaction. Journal of Materials Science, 2009, 44, 6637-6643.	3.7	22
47	Structure-activity relationship in water-gas shift reaction over gold catalysts supported on Y-doped ceria. Journal of Rare Earths, 2019, 37, 383-392.	4.8	22
48	Viability of Au/CeO ₂ –ZnO/Al ₂ O ₃ Catalysts for Pure Hydrogen Production by the Water–Gas Shift Reaction. ChemCatChem, 2014, 6, 1401-1409.	3.7	21
49	Influence of iron (II) on the transformation of ferrihydrite into goethite in acid medium. Materials Chemistry and Physics, 1995, 41, 146-149.	4.0	20
50	Impact of metal doping on the activity of Au/CeO2 catalysts for catalytic abatement of VOCs and CO in waste gases. Catalysis Communications, 2013, 35, 51-58.	3.3	19
51	CO and VOCs Catalytic Oxidation Over Alumina Supported Cu–Mn Catalysts: Effect of Au or Ag Deposition. Topics in Catalysis, 2017, 60, 110-122.	2.8	19
52	CO Adsorption on Gold Clusters Stabilized on Ceriaâ^'Titania Mixed Oxides:Â Comparison with Reference Catalysts. Journal of Physical Chemistry B, 2006, 110, 23329-23336.	2.6	18
53	New gold catalysts supported on mixed ceria-titania oxides for water-gas shift and preferential CO oxidation reactions. Reaction Kinetics and Catalysis Letters, 2007, 91, 213-221.	0.6	18
54	Relationship between structural properties and activity in complete benzene oxidation over Au/CeO2–CoOx catalysts. Catalysis Today, 2012, 187, 30-38.	4.4	16

#	Article	IF	CITATIONS
55	Effect of ceria structural properties on the catalytic activity of Au–CeO2 catalysts for WGS reaction. Physical Chemistry Chemical Physics, 2013, 15, 13400.	2.8	16
56	Photocatalytic abatement of trichlorethylene over Au and Pd–Au supported on TiO2 by combined photomineralization/hydrodechlorination reactions under simulated solar irradiation. Journal of Catalysis, 2017, 346, 101-108.	6.2	16
57	Gold catalysts supported on ceria-modified mesoporous zirconia for low-temperature water–gas shift reaction. Journal of Porous Materials, 2012, 19, 15-20.	2.6	15
58	Gold catalysts on Co-doped ceria for complete benzene oxidation: Relationship between reducibility and catalytic activity. Catalysis Communications, 2013, 36, 84-88.	3.3	15
59	Catalytic abatement of CO and volatile organic compounds in waste gases by gold catalysts supported on ceria-modified mesoporous titania and zirconia. Chinese Journal of Catalysis, 2015, 36, 579-587.	14.0	15
60	Multicomponent Au/Cu-ZnO-Al2O3 catalysts: Robust materials for clean hydrogen production. Applied Catalysis A: General, 2018, 558, 91-98.	4.3	15
61	Temperature-programmed reduction of lightly yttrium-doped Au/CeO2 catalysts. Journal of Thermal Analysis and Calorimetry, 2018, 131, 145-154.	3.6	15
62	Mechanism of the oxidative hydrolysis of iron(II) sulphate. Journal of Materials Science: Materials in Electronics, 1992, 3, 201-205.	2.2	14
63	Effect of Y Modified Ceria Support in Mono and Bimetallic Pd–Au Catalysts for Complete Benzene Oxidation. Catalysts, 2018, 8, 283.	3.5	14
64	Hydrogen production via water-gas shift reaction over gold supported on Ni-based layered double hydroxides. International Journal of Hydrogen Energy, 2021, 46, 458-473.	7.1	14
65	Mechanochemically Prepared Co3O4-CeO2 Catalysts for Complete Benzene Oxidation. Catalysts, 2021, 11, 1316.	3.5	14
66	Title is missing!. Journal of Materials Science, 2003, 38, 1995-2000.	3.7	13
67	Nanogold mesoporous iron promoted ceria catalysts for total and preferential CO oxidation reactions. Journal of Molecular Catalysis A, 2016, 414, 62-71.	4.8	13
68	Promoting effect of gold on the structure and activity of Co/kaolin catalyst for the 2,3-dihydrofuran synthesis. Catalysis Communications, 2002, 3, 341-347.	3.3	12
69	Promotional Effect of Gold on the WCS Activity of Alumina-Supported Copper-Manganese Mixed Oxides. Catalysts, 2018, 8, 563.	3.5	12
70	Gold Catalysts on Y-Doped Ceria Supports for Complete Benzene Oxidation. Catalysts, 2016, 6, 99.	3.5	11
71	Formation of goethite by oxidative hydrolysis of iron(II) sulphate. Journal of Materials Science: Materials in Electronics, 1994, 5, 168-172.	2.2	10
72	Improved Water–Gas Shift Performance of Au/NiAl LDHs Nanostructured Catalysts via CeO2 Addition. Nanomaterials, 2021, 11, 366.	4.1	9

#	Article	IF	CITATIONS
73	Synthesis of ?-Fe2O3 via oxidative hydrolysis of iron(II) sulphate. Journal of Materials Science: Materials in Electronics, 1991, 2, 199-203.	2.2	8
74	Titanium oxide nanotubes as supports of Au or Pd nano-sized catalysts for total oxidation of VOCs. Studies in Surface Science and Catalysis, 2010, 175, 743-746.	1.5	8
75	Impact of ceria loading on the preferential CO oxidation over gold catalysts on CeO2/Al2O3 and Y-doped CeO2/Al2O3 supports prepared by mechanical mixing. Catalysis Today, 2020, 357, 547-555.	4.4	8
76	Formation of highly active iron oxide catalysts. Journal of Materials Science, 1996, 31, 1101-1105.	3.7	7
77	Gold catalysts on ceria doped with MeOx (MeÂ=ÂFe, Mn, Co and Sn) for complete benzene oxidation: effect of composition and structure of the mixed supports. Reaction Kinetics, Mechanisms and Catalysis, 2012, 105, 23-37.	1.7	7
78	Water–gas shift reaction over gold deposited on NiAl layered double hydroxides. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 187-203.	1.7	7
79	Exploring the role of promoters (Au, Cu and Re) in the performance of Ni–Al layered double hydroxides for water-gas shift reaction. International Journal of Hydrogen Energy, 2023, 48, 11998-12014.	7.1	7
80	Nanosized gold catalysts on Pr-modified ceria for pure hydrogen production via WGS reaction. Materials Chemistry and Physics, 2015, 157, 138-146.	4.0	6
81	Effect of the preparation method on the reduction behavior of gold catalysts supported on ceria doped with FeOx: assignment and kinetic parameters of the individual reduction processes. Reaction Kinetics, Mechanisms and Catalysis, 2012, 105, 39-52.	1.7	5
82	CERIA-BASED GOLD CATALYSTS: SYNTHESIS, PROPERTIES, AND CATALYTIC PERFORMANCE FOR THE WGS AND PROX PROCESSES. Catalytic Science Series, 2013, , 497-564.	0.0	5
83	Pure hydrogen production via PROX over gold catalysts supported on Pr-modified ceria. Fuel, 2014, 134, 628-635.	6.4	5
84	Structure and reducibility of yttrium-doped cerium dioxide nanoparticles and (111) surface. RSC Advances, 2018, 8, 33728-33741.	3.6	5
85	Unraveling the effect of alumina-supported Y- doped ceria composition and method of preparation on the WGS activity of gold catalysts. International Journal of Hydrogen Energy, 2020, 45, 26238-26253.	7.1	5
86	Characterization of nanosized gold, silver and copper catalysts supported on ceria. Studies in Surface Science and Catalysis, 2005, 155, 493-500.	1.5	4
87	Complete Benzene Oxidation over Mono and Bimetallic Pd—Au Catalysts on Alumina-Supported Y-Doped Ceria. Applied Sciences (Switzerland), 2020, 10, 1088.	2.5	4
88	Effect of support preparation method on water-gas shift activity of copper-based catalysts. International Journal of Hydrogen Energy, 2022, 47, 41268-41278.	7.1	3
89	Cold catalysts supported on mixed oxides for hydrogen production. Studies in Surface Science and Catalysis, 2006, , 1017-1024.	1.5	2
90	Gold-Based Catalysts for Complete Formaldehyde Oxidation: Insights into the Role of Support Composition. Catalysts, 2022, 12, 705.	3.5	2

#	Article	IF	CITATIONS
91	Influence of gold presence and thermal treatment on recrystallization of copper-manganese ferrite catalysts. Hyperfine Interactions, 2017, 238, 1.	0.5	1
92	Au/CeO2 Catalysts for Catalytic Abatement of CO, CH3OH and (CH3)2O: Effect of Preparation Method. , 2012, , .		0
93	Effect of Preparation Method on the Performance for PROX of Gold Catalysts on Alumina Supported Y-Doped Ceria. International Journal of Theoretical and Applied Nanotechnology, 0, , .	0.0	0
94	A Comparative Study of Nanosized Gold and Copper Catalysts on Y-doped Ceria for the Water-Gas Shift Reaction. , 0, , .		0
95	Pure Hydrogen Production via PROX over Gold Catalysts on Alumina Supported Y-Doped Ceria: Effect of Support Preparation. , 0, , .		0