Alexander C Huang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2441791/alexander-c-huang-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,267 32 20 37 g-index h-index citations papers 9,183 5.16 37 24.3 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
32	BAMM (BRAF Autophagy and MEK inhibition in Melanoma): A phase I/II trial of dabrafenib, trametinib and hydroxychloroquine in advanced melanoma <i>Clinical Cancer Research</i> , 2022 ,	12.9	3
31	Human epigenetic and transcriptional TItell differentiation atlas for identifying functional TItell-specific enhancers <i>Immunity</i> , 2022 , 55, 557-574.e7	32.3	0
30	A decade of checkpoint blockade immunotherapy in melanoma: understanding the molecular basis for immune sensitivity and resistance <i>Nature Immunology</i> , 2022 ,	19.1	9
29	Signaling Through FcRIIA and the C5a-C5aR Pathway Mediate Platelet Hyperactivation in COVID-19 Frontiers in Immunology, 2022 , 13, 834988	8.4	1
28	Deep immune profiling of MIS-C demonstrates marked but transient immune activation compared to adult and pediatric COVID-19. <i>Science Immunology</i> , 2021 , 6,	28	74
27	Role of nuclear localization in the regulation and function of T-bet and Eomes in exhausted CD8 Tkells. <i>Cell Reports</i> , 2021 , 35, 109120	10.6	13
26	CD8 T cells contribute to survival in patients with COVID-19 and hematologic cancer. <i>Nature Medicine</i> , 2021 , 27, 1280-1289	50.5	103
25	Dichotomous and stable gamma delta T-cell number and function in healthy individuals 2021, 9,		7
24	SARS-CoV-2 Seropositivity and Seroconversion in Patients Undergoing Active Cancer-Directed Therapy. <i>JCO Oncology Practice</i> , 2021 , 17, e1879-e1886	2.3	1
23	Association of Antibiotic Exposure With Survival and Toxicity in Patients With Melanoma Receiving Immunotherapy. <i>Journal of the National Cancer Institute</i> , 2021 , 113, 162-170	9.7	31
22	Efficacy and Safety of Hydroxychloroquine vs Placebo for Pre-exposure SARS-CoV-2 Prophylaxis Among Health Care Workers: A Randomized Clinical Trial. <i>JAMA Internal Medicine</i> , 2021 , 181, 195-202	11.5	102
21	Rates of COVID-19-Related Outcomes in Cancer Compared With Noncancer Patients. <i>JNCI Cancer Spectrum</i> , 2021 , 5, pkaa120	4.6	8
20	Tumor-infiltrating mast cells are associated with resistance to anti-PD-1 therapy. <i>Nature Communications</i> , 2021 , 12, 346	17.4	34
19	Pathological response and survival with neoadjuvant therapy in melanoma: a pooled analysis from the International Neoadjuvant Melanoma Consortium (INMC). <i>Nature Medicine</i> , 2021 , 27, 301-309	50.5	65
18	CD8 T cells compensate for impaired humoral immunity in COVID-19 patients with hematologic cancer 2021 ,		11
17	Alpha-Fetoprotein-Producing Lung Hepatoid Adenocarcinoma with Brain Metastasis Treated with S-1. <i>Case Reports in Oncology</i> , 2020 , 13, 1552-1559	1	5
16	Developmental Relationships of Four Exhausted CD8 T Cell Subsets Reveals Underlying Transcriptional and Epigenetic Landscape Control Mechanisms. <i>Immunity</i> , 2020 , 52, 825-841.e8	32.3	172

LIST OF PUBLICATIONS

15	Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions 2020 ,		52
14	Neoadjuvant Versus Adjuvant Immune Checkpoint Blockade in the Treatment of Clinical Stage III Melanoma. <i>Annals of Surgical Oncology</i> , 2020 , 27, 2915-2926	3.1	5
13	Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. <i>Science</i> , 2020 , 369,	33.3	744
12	Postvaccination graft dysfunction/aplastic anemia relapse with massive clonal expansion of autologous CD8+ lymphocytes. <i>Blood Advances</i> , 2020 , 4, 1378-1382	7.8	8
11	A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma. <i>Nature Medicine</i> , 2019 , 25, 454-461	50.5	283
10	TOX transcriptionally and epigenetically programs CD8 T cell exhaustion. <i>Nature</i> , 2019 , 571, 211-218	50.4	459
9	TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8IT Cell-Fate Decision. <i>Immunity</i> , 2019 , 51, 840-855.e5	32.3	196
8	Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. <i>Nature Medicine</i> , 2018 , 24, 563-571	50.5	649
7	Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. <i>Nature</i> , 2018 , 560, 382-386	50.4	1058
6	Non-conventional Inhibitory CD4Foxp3PD-1 T Cells as a Biomarker of Immune Checkpoint Blockade Activity. <i>Cancer Cell</i> , 2018 , 33, 1017-1032.e7	24.3	81
5	Feasibility of monitoring advanced melanoma patients using cell-free DNA from plasma. <i>Pigment Cell and Melanoma Research</i> , 2018 , 31, 73-81	4.5	22
4	A phase I trial of pembrolizumab with hypofractionated radiotherapy in patients with metastatic solid tumours. <i>British Journal of Cancer</i> , 2018 , 119, 1200-1207	8.7	59
3	T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. <i>Nature</i> , 2017 , 545, 60-65	50.4	850
2	Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. <i>Science</i> , 2016 , 354, 1160-1165	33.3	618
1	Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. <i>Cell</i> , 2016 , 167, 1540-1554.e12	56.2	538