Gajendra Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2441689/publications.pdf

Version: 2024-02-01

	304602	395590
1,312	22	33
citations	h-index	g-index
		1010
5/	5/	1318
docs citations	times ranked	citing authors
	citations 57	1,312 22 h-index 57 57

#	Article	IF	CITATIONS
1	Novel BODIPY-based Ru(<scp>ii</scp>) and Ir(<scp>iii</scp>) metalla-rectangles: cellular localization of compounds and their antiproliferative activities. Chemical Communications, 2016, 52, 4274-4277.	2.2	81
2	Self-Assembled Novel BODIPY-Based Palladium Supramolecules and Their Cellular Localization. Inorganic Chemistry, 2017, 56, 4615-4621.	1.9	72
3	Efficient Energy Transfer (EnT) in Pyrene- and Porphyrin-Based Mixed-Ligand Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2017, 9, 38670-38677.	4.0	63
4	Synthesis, molecular structure, computational study and in vitro anticancer activity of dinuclear thiolato-bridged pentamethylcyclopentadienyl Rh(iii) and Ir(iii) complexes. Dalton Transactions, 2013, 42, 15457.	1.6	56
5	Selfâ€Assembly of Novel Thiopheneâ€Based BODIPY Ru ^{II} Rectangles: Potential Antiproliferative Agents Selective Against Cancer Cells. Chemistry - A European Journal, 2017, 23, 17199-17203.	1.7	55
6	Mitochondrial Localization of Highly Fluorescent and Photostable BODIPY-Based Ruthenium(II), Rhodium(III), and Iridium(III) Metal Complexes. Inorganic Chemistry, 2019, 58, 8587-8595.	1.9	49
7	BODIPY based metal-organic macrocycles and frameworks: Recent therapeutic developments. Coordination Chemistry Reviews, 2022, 452, 214308.	9.5	46
8	BODIPY-based Ru(II) and Ir(III) organometallic complexes of avobenzone, a sunscreen material: Potent anticancer agents. Journal of Inorganic Biochemistry, 2018, 189, 17-29.	1.5	44
9	Study of novel η5-cyclopentadienyl and η6-arene platinum group metal complexes containing a N4-type ligand and their structural characterization. Polyhedron, 2009, 28, 844-850.	1.0	43
10	Biological Studies of Chalcogenolato-Bridged Dinuclear Half-Sandwich Complexes. Inorganic Chemistry, 2013, 52, 13663-13673.	1.9	38
11	Ruthenium half-sandwich complexes with tautomerized pyrazolyl-pyridazine ligands: Synthesis, spectroscopic and molecular structural studies. Journal of Organometallic Chemistry, 2009, 694, 2618-2627.	0.8	37
12	Exploiting Natural Products to Build Metalla-Assemblies: The Anticancer Activity of Embelin-Derived Rh(III) and Ir(III) Metalla-Rectangles. Molecules, 2014, 19, 6031-6046.	1.7	31
13	Delivery of porphin to cancer cells by organometallic Rh(III) and Ir(III) metalla-cages. Journal of Organometallic Chemistry, 2015, 787, 44-50.	0.8	31
14	Neutral penta-coordinated diorganotin(IV) complexes derived from ortho-aminophenol Schiff bases: Synthesis, characterization and molecular structures. Journal of Organometallic Chemistry, 2010, 695, 2098-2104.	0.8	29
15	Synthesis, Molecular Structure and Cytotoxicity of Molecular Materials Based on Water Soluble Half-Sandwich Rh(III) and Ir(III) Tetranuclear Metalla-Cycles. Materials, 2013, 6, 5352-5366.	1.3	28
16	Heterometallic BODIPY-Based Molecular Squares Obtained by Self-Assembly: Synthesis and Biological Activities. ACS Omega, 2019, 4, 13200-13208.	1.6	28
17	Enhanced Photocatalytic Performance of Nanosized Mixed-Ligand Metal–Organic Frameworks through Sequential Energy and Electron Transfer Process. Inorganic Chemistry, 2020, 59, 12947-12953.	1.9	28
18	Syntheses, characterization and molecular structures of novel Ru(ii), Rh(iii) and Ir(iii) complexes and their possible roles as antitumour and cytotoxic agents. New Journal of Chemistry, 2013, 37, 2573.	1.4	27

#	Article	IF	CITATIONS
19	Anticancer activity of large metalla-assemblies built from half-sandwich complexes. CrystEngComm, 2016, 18, 4952-4957.	1.3	27
20	Study of new mononuclear platinum group metal complexes containing η5 and η6 – Carbocyclic ligands and nitrogen based derivatives and formation of helices due to NHâ√Cl interactions. Journal of Molecular Structure, 2010, 979, 205-213.	1.8	26
21	Toward an efficient photosensitizer for photodynamic therapy: Incorporating BODIPY into porphyrinic nanoscale MOFs through the solvent-assisted ligand incorporation. Dyes and Pigments, 2019, 170, 107576.	2.0	26
22	Study of complexes of platinum group metals containing nitrogen bases derived from pyridine aldehydes: Interesting molecular structures with unpredicted bonding modes of the ligands. Journal of Organometallic Chemistry, 2011, 696, 2014-2022.	0.8	23
23	Anticancer Activity of Halfâ€Sandwich Rh ^{III} and Ir ^{III} Metallaâ€Prisms Containing Lipophilic Side Chains. ChemPlusChem, 2014, 79, 610-618.	1.3	22
24	Selfâ€Assembled BODIPYâ€Based Iridium Metallarectangles: Cytotoxicity and Propensity to Bind Biomolecules. ChemPlusChem, 2018, 83, 339-347.	1.3	22
25	Novel mononuclear î-5-pentamethylcyclopentadienyl complexes of platinum group metals bearing pyrazolylpyridazine ligands: Syntheses and spectral studies. Inorganica Chimica Acta, 2010, 363, 2287-2295.	1.2	21
26	Facile synthesis of hexagonal Sb2Te3 nanoplates using Ph2SbTeR (R = Et, Ph) single source precursors. Dalton Transactions, 2013, 42, 8209.	1.6	21
27	Study of half-sandwich platinum group metal complexes bearing dpt-NH2 ligand. Polyhedron, 2010, 29, 904-910.	1.0	20
28	Spectral, structural and DFT studies of platinum group metal 3,6-bis(2-pyridyl)-4-phenylpyridazine complexes and their ligand bonding modes. Journal of Organometallic Chemistry, 2010, 695, 707-716.	0.8	19
29	BODIPY-based Ir(III) rectangles containing bis-benzimidazole ligands with highly selective toxicity obtained through self-assembly. Journal of Organometallic Chemistry, 2018, 868, 86-94.	0.8	19
30	Colorimetric detection of heavy metal ions in water via metal-organic framework. Inorganica Chimica Acta, 2019, 486, 69-73.	1.2	18
31	New series of platinum group metal complexes bearing î-5- and î-6-cyclichydrocarbons and Schiff base derived from 2-acetylthiazole: Syntheses and structural studies. Polyhedron, 2009, 28, 2649-2654.	1.0	17
32	Mononuclear Complexes of Platinum Group Metals Containing Î-⟨sup⟩6⟨/sup⟩―and Î-⟨sup⟩5⟨/sup⟩ yclic Îâ€Perimeter Hydrocarbon and Pyridylpyrazolyl Derivatives: Syntheses and Structural Studies. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 758-764.	0.6	17
33	Half sandwich platinum group metal complexes containing tetradentate N-donor ligand bearing two pyrazolyl-pyridine units linked by an aromatic spacer. Journal of Organometallic Chemistry, 2010, 695, 753-759.	0.8	16
34	Study of half sandwich platinum group metal complexes containing tetradentate N-donor ligand bearing two di-pyridylamine units linked by an aromatic spacer. Journal of Organometallic Chemistry, 2011, 696, 702-708.	0.8	16
35	A highly selective chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. Tetrahedron Letters, 2012, 53, 2571-2574.	0.7	16
36	Highly water soluble trithiolato-bridged dinuclear arene ruthenium complexes. Inorganica Chimica Acta, 2014, 423, 524-529.	1.2	14

#	Article	IF	CITATIONS
37	Antiproliferative activities of trithiolato-bridged dinuclear arene osmium complexes. Inorganica Chimica Acta, 2014, 423, 31-35.	1.2	14
38	Highly cytotoxic trithiolato-bridged dinuclear Rh(III) and Ir(III) complexes. Journal of Organometallic Chemistry, 2014, 767, 78-82.	0.8	14
39	Complementary Chromophore Decoration in NUâ€1000 via Solventâ€Assisted Ligands Incorporation: Efficient Energy Transfer within the Metalâ€Organic Frameworks. Bulletin of the Korean Chemical Society, 2019, 40, 128-133.	1.0	14
40	In Vitro Mechanistic Study of the Anti-inflammatory Activity of a Quinoline Isolated from <i>Spondias pinnata</i> Bark. Journal of Natural Products, 2018, 81, 1956-1961.	1.5	13
41	Development of a new catalytic and sustainable methodology for the synthesis of benzodiazepine triazole scaffold using magnetically separable CuFe ₂ O ₄ @MILâ€101(Cr) nanoâ€catalyst in aqueous medium. Applied Organometallic Chemistry, 2020, 34, e5782.	1.7	12
42	<scp>Zincâ€based</scp> Metal Organic Framework Derived From Anthracene and <scp>BODIPY</scp> Chromophores: Synthesis and Photophysical Properties. Bulletin of the Korean Chemical Society, 2021, 42, 645-648.	1.0	12
43	Syntheses and Molecular Structure of Dinuclear Transition Metal Complexes Bridged by Dipyridylamine Derivative Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1516-1521.	0.6	11
44	Increasing the selectivity of biologically active tetranuclear arene ruthenium assemblies. Journal of Organometallic Chemistry, 2015, 796, 59-64.	0.8	11
45	Hydroxylation of azomethine carbon: isolation of complexes of \hat{l} - $sup>5$, $up>6$,	0.8	10
46	Investigating the Formation Mechanism of Arene Ruthenium Metallacycles by NMR Spectroscopy. European Journal of Inorganic Chemistry, 2014, 2014, 5651-5661.	1.0	10
47	Facile solution routes for the syntheses of GeTe nanocrystals. RSC Advances, 2013, 3, 288-292.	1.7	9
48	Selective cytotoxicity of self-assembled BODIPY metalla-rectangles: Evidence of p53-Dependent apoptosis via both intrinsic and extrinsic pathways. Dyes and Pigments, 2020, 180, 108478.	2.0	8
49	Amidation of aldehydes using mono-cationic half-sandwich rhodium(III) complexes with functionalized phenylhydrazone ligands. Journal of Organometallic Chemistry, 2019, 886, 65-70.	0.8	7
50	Syntheses and structural studies of mononuclear arene ruthenium complexes with nitrogen-based chelating ligands. Journal of Coordination Chemistry, 2012, 65, 2523-2534.	0.8	6
51	Synthesis, Structure, and Heavy Atom Effect of <scp>Ptâ€Ferrocene BODIPY</scp> Complexes. Bulletin of the Korean Chemical Society, 2020, 41, 599-602.	1.0	5
52	Multinuclear Ir-BODIPY complexes: Synthesis and binding studies. Inorganic Chemistry Communication, 2020, 113, 107759.	1.8	3
53	Pyrene and porphyrin-based Zn metal 1-D-polymer: synthesis, molecular structure, and photocatalytic property. Dalton Transactions, 2022, 51, 4257-4261.	1.6	3
54	[Bis(2-pyridyl-κN)amine]chlorido(η6-hexamethylbenzene)ruthenium(II) hexafluoridophosphate dichloromethane solvate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m548-m548.	0.2	2

#	Article	IF	CITATIONS
55	Unexpected Formation of (1 + 1) Ruthenium Macrocycle from Flexible Ru(II) Clip. Bulletin of the Korean Chemical Society, 2020, 41, 213-215.	1.0	2
56	Synthesis of <scp>Sb₂Te₃</scp> Hierarchical Nanostructures by Divalent Germanium Ionâ€assisted Solution Method. Bulletin of the Korean Chemical Society, 2015, 36, 2841-2845.	1.0	0