
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/244141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genotoxicity Response of Fibroblast Cells and Human Epithelial Adenocarcinoma In Vitro Model Exposed to Bare and Ozone-Treated Silica Microparticles. Cells, 2022, 11, 226.	4.1	1
2	Nanotechnological engineering of extracellular vesicles for the development of actively targeted hybrid nanodevices. Cell and Bioscience, 2022, 12, 61.	4.8	13
3	Microfluidics for 3D Cell and Tissue Cultures: Microfabricative and Ethical Aspects Updates. Cells, 2022, 11, 1699.	4.1	4
4	Direct Visualization and Identification of Membrane Voltageâ€Gated Sodium Channels from Human iPSCâ€Derived Neurons by Multiple Imaging and Light Enhanced Spectroscopy. Small Methods, 2022, 6, .	8.6	2
5	Enhancing the preservation of liposomes: The role of cryoprotectants, lipid formulations and freezing approaches. Cryobiology, 2021, 98, 46-56.	0.7	25
6	Three-dimensionally two-photon lithography realized vascular grafts. Biomedical Materials (Bristol), 2021, 16, 035013.	3.3	21
7	DNA Studies: Latest Spectroscopic and Structural Approaches. Micromachines, 2021, 12, 1094.	2.9	1
8	Biomimetic mesoporous vectors enabling the efficient inhibition of wild-type isocitrate dehydrogenase in multiple myeloma cells. Microporous and Mesoporous Materials, 2021, 325, 111320.	4.4	5
9	Biomedical Applications of Reactive Oxygen Species Generation by Metal Nanoparticles. Materials, 2021, 14, 53.	2.9	108
10	Micro/Nanopatterned Superhydrophobic Surfaces Fabrication for Biomolecules and Biomaterials Manipulation and Analysis. Micromachines, 2021, 12, 1501.	2.9	5
11	Special Issue "Metal and Metal Oxide Nanoparticles: Design, Characterization, and Biomedical Applications― Materials, 2021, 14, 7287.	2.9	0
12	Extracellular Vesicles Tropism: A Comparative Study between Passive Innate Tropism and the Active Engineered Targeting Capability of Lymphocyte-Derived EVs. Membranes, 2021, 11, 886.	3.0	15
13	Lipid-Based Nanovesicular Drug Delivery Systems. Nanomaterials, 2021, 11, 3391.	4.1	29
14	Editorial: Nano-Bio Interactions: Ecotoxicology and Cytotoxicity of Nanomaterials. Frontiers in Bioengineering and Biotechnology, 2020, 8, 918.	4.1	0
15	Drug Delivery Applications of Three-Dimensional Printed (3DP) Mesoporous Scaffolds. Pharmaceutics, 2020, 12, 851.	4.5	27
16	Biodegradable and Drug-Eluting Inorganic Composites Based on Mesoporous Zinc Oxide for Urinary Stent Applications. Materials, 2020, 13, 3821.	2.9	12
17	Zinc Oxide Nanocrystals and High-Energy Shock Waves: A New Synergy for the Treatment of Cancer Cells. Frontiers in Bioengineering and Biotechnology, 2020, 8, 577.	4.1	30
18	Influence of the Fabrication Accuracy of Hot-Embossed PCL Scaffolds on Cell Growths. Frontiers in Bioengineering and Biotechnology, 2020, 8, 84.	4.1	7

#	Article	IF	CITATIONS
19	Dualism of Viruses in Oncology. Biomedical Journal of Scientific & Technical Research, 2020, 29, .	0.1	0
20	Microfluidic platforms for cell cultures and investigations. Microelectronic Engineering, 2019, 208, 14-28.	2.4	139
21	Improving dispersal of therapeutic nanoparticles in the human body. Nanomedicine, 2019, 14, 797-801.	3.3	31
22	Development of 3D PVA scaffolds for cardiac tissue engineering and cell screening applications. RSC Advances, 2019, 9, 4246-4257.	3.6	76
23	A Microwave-Assisted Synthesis of Zinc Oxide Nanocrystals Finely Tuned for Biological Applications. Nanomaterials, 2019, 9, 212.	4.1	61
24	The Synergistic Effect of Nanocrystals Combined With Ultrasound in the Generation of Reactive Oxygen Species for Biomedical Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 374.	4.1	25
25	ZnO nanocrystals shuttled by extracellular vesicles as effective Trojan nano-horses against cancer cells. Nanomedicine, 2019, 14, 2815-2833.	3.3	41
26	Engineered Extracellular Vesicles as a Reliable Tool in Cancer Nanomedicine. Cancers, 2019, 11, 1979.	3.7	67
27	Nanoparticles for hematologic diseases detection and treatment. Hematology & Medical Oncology, 2019, 4, 1000183.	0.1	5
28	Nanoparticle-assisted ultrasound: A special focus on sonodynamic therapy against cancer. Chemical Engineering Journal, 2018, 340, 155-172.	12.7	286
29	Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration. Molecular Neurobiology, 2018, 55, 8788-8798.	4.0	27
30	Zinc Oxide Nanostructures in Biomedicine. , 2018, , 171-187.		23
31	Imaging and structural studies of DNA–protein complexes and membrane ion channels. Nanoscale, 2017, 9, 2768-2777.	5.6	9
32	Raman on suspended DNA: Novel super-hydrophobic approach for structural studies. Microelectronic Engineering, 2017, 175, 38-42.	2.4	10
33	Nanoplasmonic and Microfluidic Devices for Biological Sensing. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 247-274.	0.3	1
34	Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow. Microelectronic Engineering, 2017, 178, 194-198.	2.4	11
35	Laboratory injection molder for the fabrication of polymeric porous poly-epsilon-caprolactone scaffolds for preliminary mesenchymal stem cells tissue engineering applications. Microelectronic Engineering, 2017, 175, 12-16.	2.4	16
36	Enhanced biostability and cellular uptake of zinc oxide nanocrystals shielded with a phospholipid bilayer. Journal of Materials Chemistry B, 2017, 5, 8799-8813.	5.8	75

#	Article	IF	CITATIONS
37	Fabrication and Applications of Micro/Nanostructured Devices for Tissue Engineering. Nano-Micro Letters, 2017, 9, 1.	27.0	171
38	An Overview of Lipid Droplets in Cancer and Cancer Stem Cells. Stem Cells International, 2017, 2017, 1-17.	2.5	165
39	Stable Stretched Suspended DNA Molecules. Advancements in Genetic Engineering, 2016, 05, .	0.1	1
40	Fabrication, Mercury Intrusion Porosimetry Characterization and In Vitro Qualitative Analysis of Biocompatibility of Various Porosities Polycaprolactone Scaffolds. Journal of Tissue Science & Engineering, 2015, 06, .	0.2	3
41	Soluble CD54 induces human endothelial cells ex vivo expansion useful for cardiovascular regeneration and tissue engineering application. IJC Heart and Vasculature, 2015, 6, 48-53.	1.1	4
42	Photolithography and micromolding techniques for the realization of 3D polycaprolactone scaffolds for tissue engineering applications. Microelectronic Engineering, 2015, 141, 135-139.	2.4	26
43	Novel Plasmonic Probes and Smart Superhydrophobic Devices, New Tools for Forthcoming Spectroscopies at the Nanoscale. NATO Science for Peace and Security Series B: Physics and Biophysics, 2015, , 209-235.	0.3	1
44	Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain. Science Advances, 2015, 1, e1500487.	10.3	58
45	The structure of DNA by direct imaging. Science Advances, 2015, 1, e1500734.	10.3	42
46	The Five Ws (and one H) of Super-Hydrophobic Surfaces in Medicine. Micromachines, 2014, 5, 239-262.	2.9	9
47	Superhydrophobic Devices Molecular Detection. Advances in Atom and Single Molecule Machines, 2014, , 45-60.	0.0	0
48	Probing droplets on superhydrophobic surfaces byÂsynchrotron radiation scattering techniques. Journal of Synchrotron Radiation, 2014, 21, 643-653.	2.4	17
49	Cancer Therapy: Folic Acid Functionalized Surface Highlights 5-Methylcytosine-Genomic Content within Circulating Tumor Cells (Small 21/2014). Small, 2014, 10, 4412-4412.	10.0	16
50	Folic Acid Functionalized Surface Highlights 5â€Methylcytosineâ€Genomic Content within Circulating Tumor Cells. Small, 2014, 10, 4324-4331.	10.0	9
51	Fabrication of biocompatible free-standing nanopatterned films for primary neuronal cultures. RSC Advances, 2014, 4, 45696-45702.	3.6	31
52	Raman spectroscopy for detection of stretched DNAs on superhydrophobic surfaces. Microelectronic Engineering, 2014, 119, 151-154.	2.4	10
53	Nanostructured Superhydrophobic Substrates Trigger the Development of 3D Neuronal Networks. Small, 2013, 9, 402-412.	10.0	83
54	X-ray emission analysis of a plasma source using an yttrium and a mylar target for the generation of 2.48nm wavelength microbeam. Applied Surface Science, 2013, 272, 119-123.	6.1	3

#	Article	IF	CITATIONS
55	3D Cell Cultures: Nanostructured Superhydrophobic Substrates Trigger the Development of 3D Neuronal Networks (Small 3/2013). Small, 2013, 9, 334-334.	10.0	2
56	Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood, 2012, 120, 1274-1281.	1.4	101
57	Direct Imaging of DNA Fibers: The Visage of Double Helix. Nano Letters, 2012, 12, 6453-6458.	9.1	73
58	A nanogap–array platform for testing the optically modulated conduction of gold–octithiophene–gold junctions for molecular optoelectronics. RSC Advances, 2012, 2, 10985.	3.6	14
59	Nanoporous silicon nanoparticles for drug delivery applications. Microelectronic Engineering, 2012, 98, 626-629.	2.4	17
60	The periphrastic anticipatory effect: An fMRI study of the linguistic-driven anticipatory activity of posterior brain areas in causal representation. Revista Signos, 2012, 45, 7-8.	0.3	0
61	Abstract 4575: Three-gene diagnostic classifier for ALK negative ALCL. , 2012, , .		0
62	X-ray emission from plasma produced by a Nd:YAG/glass laser on a Cu target: a preliminary analysis. Radiation Effects and Defects in Solids, 2010, 165, 693-699.	1.2	1
63	Acute Mobile Phones Exposure Affects Frontal Cortex Hemodynamics as Evidenced by Functional Near-Infrared Spectroscopy. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 903-910.	4.3	20
64	Qualitative detection of Mg content in a leaf ofHedera helix by using X-ray radiation from a laser plasma source. Microscopy Research and Technique, 2008, 71, 459-468.	2.2	29
65	<i>Saponaria officinalis</i> karyology and karyotype by means of image analyzer and atomic force microscopy. Microscopy Research and Technique, 2008, 71, 730-736.	2.2	7
66	Experimental layout for the realization of an X-ray plasma source driven by a Nd:YAG laser for biological and medical applications. Radiation Effects and Defects in Solids, 2008, 163, 505-512.	1.2	3
67	Genotoxicity induced by fine urban air particulate matter in the macrophages cell line RAW 264.7. Toxicology in Vitro, 2006, 20, 1023-1029.	2.4	21
68	Current state and perspectives of truffle genetics and sustainable biotechnology. Applied Microbiology and Biotechnology, 2006, 72, 437-441.	3.6	16
69	Microradiography as a tool to detect heavy metal uptake in plants for phytoremediation applications. Microscopy Research and Technique, 2006, 69, 666-674.	2.2	36
70	Tuber borchiimycelial protoplasts isolation, characterization and functional delivery of liposome content, a new step towards truffles biotechnology. FEMS Microbiology Letters, 2005, 253, 331-337.	1.8	5
71	Interactions between saporin, a ribosome-inactivating protein, and DNA: a study by atomic force microscopy. Journal of Microscopy, 2005, 217, 69-74.	1.8	10
72	Soft x-ray submicron imaging detector based on point defects in LiF. Review of Scientific Instruments, 2005, 76, 113104.	1.3	79

#	Article	IF	CITATIONS
73	Comparative analysis of isolated cellular organelles by means of soft X-ray contact microscopy with laser-plasma source and transmission electron microscopy. Journal of Microscopy, 2004, 214, 43-50.	1.8	2
74	Differences in X-ray absorption due to cadmium treatment inSaponaria officinalis leaves. Microscopy Research and Technique, 2004, 64, 21-29.	2.2	37
75	Lithium fluoride coloration by laser-plasma soft x-rays: a promising tool for x-ray microscopy and photonics. , 2004, , .		5
76	Role of the wall ablation in the operation of a 46.9 nmAr capillary discharge soft x-ray laser. Contributions To Plasma Physics, 2003, 43, 88-93.	1.1	11
77	High-resolution and high-efficiency coloration of lithium fluoride by soft x-ray irradiation. , 2003, , .		1
78	Soft X-ray contact microscopy and transmission electron microscopy: Comparative study of biological samples. European Physical Journal Special Topics, 2003, 104, 345-348.	0.2	2
79	Investigation of the output pulse characteristics of a 46.9 nm Ar capillary discharge soft x-ray laser. AIP Conference Proceedings, 2002, , .	0.4	5
80	Shadow monochromatic backlighting: Large-field high resolution X-ray shadowgraphy with improved spectral tunability. Laser and Particle Beams, 2001, 19, 285-293.	1.0	27
81	<title>Fast collisional capillary discharge source for soft x-ray production and applications</title> . , 2001, , .		0
82	Capillary discharge experiment for collisional excitation soft X-ray laser. European Physical Journal Special Topics, 2001, 11, Pr2-583-Pr2-586.	0.2	0
83	Applications des plasmas produits par le laser à excimères HERCULES-L : du recuit du silicium à la lithographie par rayons X. European Physical Journal Special Topics, 2001, 11, Pr7-133-Pr7-134.	0.2	1
84	<title>Large-field high-resolution x-ray monochromatic microscope based on spherical crystals and
high-repetition-rate laser-produced plasmas</title> . , 1999, 3767, 67.		5
85	Using spherically bent crystals for obtaining high-resolution, large-field, monochromatic X-ray backlighting imaging for wide range of Bragg angles. , 0, , .		1
86	Selfâ€sieving DNA over superhydrophobic surfaces: A Raman spectroscopy study. Journal of Raman Spectroscopy, 0, , .	2.5	1
87	An Opinion on How Nanobiotechnology is Assisting Humankind to Overcome the Coronavirus Disease 2019. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	0