Jingying Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2441232/publications.pdf

Version: 2024-02-01

111	3,219	28	51
papers	citations	h-index	g-index
111	111	111	2445
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Promotional mechanisms of activity and SO 2 tolerance of Co- or Ni-doped MnOx-CeO 2 catalysts for SCR of NOx with NH 3 at low temperature. Chemical Engineering Journal, 2017, 317, 20-31.	12.7	355
2	A Review on Selective Catalytic Reduction of NOx by NH3 over Mn–Based Catalysts at Low Temperatures: Catalysts, Mechanisms, Kinetics and DFT Calculations. Catalysts, 2017, 7, 199.	3.5	159
3	Behaviors and kinetics of toluene adsorptionâ€desorption on activated carbons with varying pore structure. Journal of Environmental Sciences, 2018, 67, 104-114.	6.1	150
4	Spontaneous Formation of Asymmetric Oxygen Vacancies in Transition-Metal-Doped CeO ₂ Nanorods with Improved Activity for Carbonyl Sulfide Hydrolysis. ACS Catalysis, 2020, 10, 11739-11750.	11.2	140
5	Adsorption equilibrium and kinetics for SO2, NO, CO2 on zeolites FAU and LTA. Journal of Hazardous Materials, 2012, 203-204, 111-117.	12.4	137
6	Improvement of activity, selectivity and H2O& SO2-tolerance of micro-mesoporous CrMn2O4 spinel catalyst for low-temperature NH3-SCR of NOx. Applied Surface Science, 2019, 466, 411-424.	6.1	134
7	Novel Co– or Ni–Mn binary oxide catalysts with hydroxyl groups for NH3–SCR of NOx at low temperature. Applied Surface Science, 2018, 443, 103-113.	6.1	114
8	Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Research, 2020, 13, 1544-1551.	10.4	89
9	Promotional role of Mo on Ce0.3FeOx catalyst towards enhanced NH3-SCR catalytic performance and SO2 resistance. Chemical Engineering Journal, 2020, 398, 125619.	12.7	79
10	Using CuO-MnOx/AC-H as catalyst for simultaneous removal of HgÂ $^\circ$ and NO from coal-fired flue gas. Journal of Hazardous Materials, 2019, 364, 700-709.	12.4	58
11	Controlled Synthesis of Spinel-Type Mesoporous Mn–Co Rods for SCR of NO _{<i>x</i>} with NH ₃ at Low Temperature. Industrial & Engineering Chemistry Research, 2019, 58, 3606-3617.	3.7	56
12	Evolution mechanism of transition metal in NH3-SCR reaction over Mn-based bimetallic oxide catalysts: Structure-activity relationships. Journal of Hazardous Materials, 2021, 413, 125361.	12.4	54
13	The effect of non-selective oxidation on the Mn2Co1Ox catalysts for NH3-SCR: Positive and non-positive. Chemical Engineering Journal, 2020, 385, 123797.	12.7	52
14	Transition in air pollution, disease burden and health cost in China: A comparative study of long-term and short-term exposure. Environmental Pollution, 2021, 277, 116770.	7.5	52
15	Facile synthesis of hollow nanotube MnCoOx catalyst with superior resistance to SO2 and alkali metal poisons for NH3-SCR removal of NOx. Separation and Purification Technology, 2021, 265, 118517.	7.9	52
16	Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environmental Science and Pollution Research, 2017, 24, 21877-21884.	5. 3	47
17	Effect of Fe/Cu/Ce loading on the coal-based activated carbons for hydrolysis of carbonyl sulfide. Journal of Rare Earths, 2010, 28, 205-210.	4.8	46
18	Simultaneous catalytic hydrolysis of carbonyl sulfide and carbon disulfide over Al2O3-K/CAC catalyst at low temperature. Journal of Energy Chemistry, 2014, 23, 221-226.	12.9	45

#	Article	IF	Citations
19	Simultaneous Catalytic Hydrolysis of Carbonyl Sulfide and Carbon Disulfide over Modified Microwave Coal-Based Active Carbon Catalysts at Low Temperature. Journal of Physical Chemistry C, 2012, 116, 17055-17062.	3.1	42
20	Interactive Effect for Simultaneous Removal of SO ₂ , NO, and CO ₂ in Flue Gas on Ion Exchanged Zeolites. Industrial & Engineering Chemistry Research, 2013, 52, 6778-6784.	3.7	42
21	Enhancement effects of ultrasound assisted in the synthesis of NiAl hydrotalcite for carbonyl sulfide removal. Ultrasonics Sonochemistry, 2016, 32, 336-342.	8.2	41
22	The poisoning and regeneration effect of alkali metals deposed over commercial V2O5-WO3/TiO2 catalysts on SCR of NO by NH3. Science Bulletin, 2014, 59, 3966-3972.	1.7	36
23	Preparation and characterization of Cu/Ni/Fe hydrotalcite-derived compounds as catalysts for the hydrolysis of carbon disulfide. Chemical Engineering Journal, 2016, 284, 103-111.	12.7	36
24	Removal of volatile odorous organic compounds over NiAl mixed oxides at low temperature. Journal of Hazardous Materials, 2018, 344, 797-810.	12.4	34
25	Application of AERMOD on near future air quality simulation under the latest national emission control policy of China: A case study on an industrial city. Journal of Environmental Sciences, 2013, 25, 1608-1617.	6.1	33
26	Energy Utilization of Yellow Phosphorus Tail Gas: Simultaneous Catalytic Hydrolysis of Carbonyl Sulfide and Carbon Disulfide at Low Temperature. Energy Technology, 2015, 3, 136-144.	3.8	32
27	Study of reaction mechanism based on further promotion of low temperature degradation of toluene using nano-CeO2/Co3O4 under microwave radiation for cleaner production in spraying processing. Journal of Hazardous Materials, 2019, 373, 321-334.	12.4	31
28	Effect of Calcination Temperature on Catalytic Hydrolysis of COS over CoNiAl Catalysts Derived from Hydrotalcite Precursor. Industrial & Engineering Chemistry Research, 2011, 50, 13273-13279.	3.7	28
29	Mn2NiO4 spinel catalyst for high-efficiency selective catalytic reduction of nitrogen oxides with good resistance to H2O and SO2 at low temperature. Journal of Environmental Sciences, 2020, 89, 145-155.	6.1	28
30	Recent advances in selective catalytic oxidation of nitric oxide (NO-SCO) in emissions with excess oxygen: a review on catalysts and mechanisms. Environmental Science and Pollution Research, 2021, 28, 2549-2571.	5. 3	28
31	Studies on the Dual-Templating Function of TBA for the Formation of ZSM-11 Intergrowth Morphology. Industrial & Engineering Chemistry Research, 2015, 54, 2120-2128.	3.7	26
32	Spinel-structured Mn–Ni nanosheets for NH ₃ -SCR of NO with good H ₂ O and SO ₂ resistance at low temperature. Catalysis Science and Technology, 2020, 10, 7486-7501.	4.1	26
33	Preparation and Phosphine Adsorption of Activated Carbon Prepared from Walnut Shells by KOH Chemical Activation. Separation Science and Technology, 2014, 49, 2366-2375.	2.5	25
34	Nitrogen Fixation and NO Conversion using Dielectric Barrier Discharge Reactor: Identification and Evolution of Products. Plasma Chemistry and Plasma Processing, 2018, 38, 485-501.	2.4	25
35	Superior catalytic performance within H2O-vapor of W-modified CoMn2O4/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Chemical Engineering Journal, 2022, 434, 134770.	12.7	25
36	Mechanism of Catalytic Oxidation of NO over Mn–Co–Ce–Ox Catalysts with the Aid of Nonthermal Plasma at Low Temperature. Industrial & Engineering Chemistry Research, 2011, 50, 11023-11028.	3.7	24

#	Article	IF	CITATIONS
37	Performance and Pathways of Toluene Degradation over Co/13X by Different Processes Based on Nonthermal Plasma. Energy & Different Processes Based on Nonthermal Plasma.	5.1	23
38	Simultaneous Removal of SO2, NO, and CO2 on Metal-Modified Coconut Shell Activated Carbon. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	22
39	Removal of toluene from industrial gas over 13X zeolite supported catalysts by adsorptionâ€plasma catalytic process. Journal of Chemical Technology and Biotechnology, 2017, 92, 2276-2286.	3.2	21
40	Novel synthesis of Pd-CeMnO3 perovskite based on unique ultrasonic intervention from combination of Sol-Gel and impregnation method for low temperature efficient oxidation of benzene vapour. Ultrasonics Sonochemistry, 2018, 48, 418-423.	8.2	21
41	Acid modification enhances selective catalytic reduction activity and sulfur dioxide resistance of manganese-cerium-cobalt catalysts: Insight into the role of phosphotungstic acid. Journal of Colloid and Interface Science, 2021, 603, 291-306.	9.4	21
42	An Efficient Two-Step Method for NH < sub > 3 < / sub > Removal at Low Temperature Using CoO < sub > < i > x < / i > < / sub > -CuO < sub > < i > x < / i > < / sub > /TiO < sub > 2 < / sub > as SCO Catalyst Followed by NiMn < sub > 2 < / sub > O < sub > 4 < / sub > as SCR Catalyst. Energy & amp; Fuels, 2017, 31, 8580-8593.	5.1	20
43	N ₂ O Formation Characteristics in Dielectric Barrier Discharge Reactor for Environmental Application: Effect of Operating Parameters. Energy & Environmental Application: Environmental Application: Environmental Application: Environmental Application: Environmental Application: Environmental Application: Environmental Environ	5.1	20
44	NiO-Modified Coconut Shell Based Activated Carbon Pretreated with KOH for the High-Efficiency Adsorption of NO at Ambient Temperature. Industrial & Engineering Chemistry Research, 2018, 57, 16593-16603.	3.7	20
45	Reducing the competitive adsorption between SO2 and NO by Al2O3@TiO2 core-shell structure adsorbent. Chemical Engineering Journal, 2019, 364, 420-427.	12.7	20
46	The potential mechanism of potassium promoting effect in the removal of COS over K/NiAlO mixed oxides. Separation and Purification Technology, 2018, 194, 33-39.	7.9	19
47	Fe-modified Ce-MnOx/ACFN catalysts for selective catalytic reduction of NOx by NH3 at low-middle temperature. Environmental Science and Pollution Research, 2019, 26, 27940-27952.	5.3	19
48	Co- or Ni-modified Sn-MnOx low-dimensional multi-oxides for high-efficient NH3-SCR De-NOx: Performance optimization and reaction mechanism. Journal of Environmental Sciences, 2022, 113, 204-218.	6.1	19
49	Mechanism of activity enhancement of the Ni based hydrotalcite-derived materials in carbonyl sulfide removal. Materials Chemistry and Physics, 2018, 205, 35-43.	4.0	17
50	Effects of preparation conditions on the performance of simultaneous desulfurization and denitrification over SiO 2 -MnO x composites. Journal of Cleaner Production, 2018, 189, 627-634.	9.3	17
51	Characterization of Metal Oxide-modified Walnut-shell Activated Carbon and Its Application for Phosphine Adsorption: Equilibrium, Regeneration, and Mechanism Studies. Journal Wuhan University of Technology, Materials Science Edition, 2019, 34, 487-495.	1.0	17
52	Simultaneous removal of gaseous CO and elemental mercury over Cu-Co modified activated coke at low temperature. Journal of Environmental Sciences, 2021, 101, 36-48.	6.1	17
53	MnCo nanoarray in-situ grown on 3D flexible nitrogen-doped carbon foams as catalyst for high-performance denitration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 126007.	4.7	17
54	Study on mechanism of low-temperature oxidation of n-hexanal catalysed by 2D ultrathin Co3O4 nanosheets. Nano Research, 2022, 15, 1660-1671.	10.4	17

#	Article	IF	CITATIONS
55	Inhibition of CO in Blast Furnace Flue Gas on Poisoning and Deactivation of a Ni/Activated Carbon Catalyst in COS Hydrolysis. Industrial & Engineering Chemistry Research, 2021, 60, 18183-18193.	3.7	17
56	Reactivation of CoNiAl Calcined Hydrotalcite-like Compounds for Hydrolysis of Carbonyl Sulfide. Industrial & Engineering Chemistry Research, 2013, 52, 9331-9336.	3.7	16
57	Preparation of Activated Carbons from Tobacco Stems by Potassium Hydroxide Activation and Phosphine Adsorption. Separation Science and Technology, 2013, 48, 813-819.	2.5	16
58	NO removal in the process of adsorption non-thermal plasma catalytic decomposition. RSC Advances, 2014, 4, 8502.	3.6	16
59	Promoted adsorption of methyl mercaptan by <mml:math altimg="si74.svg" display="inline" id="d1e422" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi<math>\hat{I}^3</mml:mi<math></mml:math> -Al2O3 catalyst loaded with Cu/Mn. Environmental Technology and Innovation, 2021, 21, 101349.	6.1	16
60	Adsorptive removal of carbonyl sulfide by Fe-modified activated carbon: experiments and DFT calculations. Adsorption, 2017, 23, 1013-1022.	3.0	15
61	Removal of Toluene from Industrial Gas by Adsorption–Plasma Catalytic Process: Comparison of Closed Discharge and Ventilated Discharge. Plasma Chemistry and Plasma Processing, 2018, 38, 331-345.	2.4	15
62	Novel synthesis of MeOx (Ni, Cu, La)@Nano-Co3O4 from combination of complexation and impregnation in ultrasonic intervention for low temperature oxidation of toluene under microwave radiation. Ultrasonics Sonochemistry, 2018, 40, 543-551.	8.2	15
63	Effect of Preparation Conditions on the Property Cu/AC Adsorbents for Phosphine Adsorption. Separation Science and Technology, 2012, 47, 527-533.	2.5	14
64	Simultaneous Adsorption of SO ₂ , NO, and CO ₂ by K ₂ CO ₃ â€Modified γâ€Alumina. Chemical Engineering and Technology, 2014, 37, 1049-1054.	1.5	14
65	The byproduct generation analysis of the NO _x conversion process in dielectric barrier discharge plasma. RSC Advances, 2016, 6, 63946-63953.	3.6	14
66	Facile fabrication of nanosheet-assembled MnCoOx hollow flower-like microspheres as highly effective catalysts for the low-temperature selective catalytic reduction of NOx by NH3. Environmental Science and Pollution Research, 2019, 26, 35846-35859.	5. 3	14
67	Synthesis of Mn-CeOx/cordierite catalysts using various coating materials and pore-forming agents for non-methane hydrocarbon oxidation in cooking oil fumes. Ceramics International, 2018, 44, 15472-15477.	4.8	13
68	Selective catalytic reduction of NO x with NH 3 over ironâ€cerium mixed oxide catalyst prepared by different methods. Journal of Chemical Technology and Biotechnology, 2020, 95, 232-245.	3.2	13
69	Mn-Fe-Ce multiple oxides with Al2O3 coating supported onto honeycomb cordierite monoliths for NO catalytic oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125790.	4.7	13
70	Nitric oxide decomposition using atmospheric pressure dielectric barrier discharge reactor with different adsorbents. RSC Advances, 2014, 4, 58417-58425.	3.6	12
71	Deactivation and reactivation of the KOH impregnated Fe–Cu–Ni/AC catalyst for hydrolysis of carbon disulfide. Catalysis Communications, 2014, 56, 106-109.	3.3	12
72	Adsorption Separation of CO ₂ /CH ₄ Gas Mixture on Carbon Molecular Sieves Modified by Potassium Carbonate. Journal of Chemical & Engineering Data, 2016, 61, 2197-2201.	1.9	12

#	Article	IF	CITATIONS
73	Improving the Efficiency of Mn-CeO _{<i>x</i>} /Cordierite Catalysts for Nonmethane Hydrocarbon Oxidation in Cooking Oil Fumes. Industrial & Engineering Chemistry Research, 2018, 57, 4186-4194.	3.7	12
74	Study of the properties of adsorption of SO ₂ –Âthermal regeneration cycle of activated coke modified by oxidization. Journal of Chemical Technology and Biotechnology, 2018, 93, 720-729.	3.2	12
75	Study on active cokeâ€based adsorbents for <scp>SO₂</scp> removal in flue gas. Journal of Chemical Technology and Biotechnology, 2015, 90, 1876-1885.	3.2	11
76	Products Yield and Energy Efficiency of Dielectric Barrier Discharge for NO Conversion: Effect of O2 Content, NO Concentration, and Flow Rate. Energy & Energy & 2017, 31, 9675-9683.	5.1	11
77	One-step synthesis, characterization and catalytic performance of hierarchical Zn-ZSM-11 via facile ZnO routes. RSC Advances, 2015, 5, 8152-8162.	3.6	10
78	A novel ferrisilicate MEL zeolite with bi-functional adsorption/catalytic oxidation properties for non-methane hydrocarbon removal from cooking oil fumes. Microporous and Mesoporous Materials, 2020, 309, 110509.	4.4	10
79	Novel Niâ€Mn Biâ€oxides Doped Active Coke Catalysts for NH 3 â€SCR Deâ€NOx at Low Temperature. ChemistrySelect, 2020, 5, 6494-6503.	1.5	10
80	Simultaneous Desulfurization and Denitrification on the SAPO-34@Al ₂ O ₃ Core–Shell Structure Adsorbent. Energy & Ene	5.1	9
81	Mnâ€Feâ€Ce Coating onto Cordierite Monoliths as Structured Catalysts for NO Catalytic Oxidation. ChemistrySelect, 2019, 4, 4664-4671.	1.5	9
82	Effects of Preparation Conditions on the Performance of Simultaneous Desulfurization and Denitrification over Ni/Fe Hydrotalcite-like Compounds. Energy & Samp; Fuels, 2016, 30, 2295-2301.	5.1	8
83	Studies on the calcium poisoning and regeneration of commercial De-NO x SCR catalyst. Chemical Papers, 2017, 71, 1921-1928.	2.2	8
84	Mn-CeOx/MeOx(Ti, Al)/cordierite preparation with ultrasound-assisted for non-methane hydrocarbon removal from cooking oil fumes. Ultrasonics Sonochemistry, 2019, 53, 126-133.	8.2	8
85	Cordierite-supported metal oxide for non-methane hydrocarbon oxidation in cooking oil fumes. Environmental Technology (United Kingdom), 2019, 40, 3358-3363.	2.2	8
86	Self-assembled biomineralized MnOx for low temperature selective catalytic reduction of NOx. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128667.	4.7	8
87	Carbon disulfide hydrolysis over Fe-Cu/AC catalyst modified by cerium and lanthanum at low temperature. Journal of Rare Earths, 2010, 28, 343-346.	4.8	7
88	Trends in air pollutant emissions from the sintering process of the iron and steel industry in the Fenwei Plain and surrounding regions in China, 2014–2017. Chemosphere, 2022, 291, 132917.	8.2	7
89	Study on coadsorption of SO ₂ , NO, and CO ₂ over copperâ€supported activated carbon sorbent in different operating conditions. Environmental Progress and Sustainable Energy, 2015, 34, 1044-1049.	2.3	6
90	Removal of SO2 over modified activated coke desulfurizers at low temperatures. Research on Chemical Intermediates, 2015, 41, 213-222.	2.7	6

#	Article	IF	CITATIONS
91	Effects of seeding on the fast crystallization of ZSM-11 microspheres with intergrowth morphology and small particle size. Journal of Porous Materials, 2016, 23, 273-284.	2.6	6
92	Promotional Effects of Transition Metal Modification over Al ₂ O ₃ for CH ₃ SH Catalytic Oxidation. ChemistrySelect, 2019, 4, 9901-9907.	1.5	6
93	Environmental Risk Assessment System for Phosphogypsum Tailing Dams. Scientific World Journal, The, 2013, 2013, 1-13.	2.1	5
94	Catalytic oxidation of NO over Mn–Co–Ce–Ox catalysts: effect of reaction conditions. Research on Chemical Intermediates, 2014, 40, 169-177.	2.7	5
95	Nonâ€thermal plasmaâ€assisted catalytic oxidation of NO in a dielectric barrier discharge reactor packed with MO _x /Al ₂ O ₃ (M = Mn or Co) as catalysts. Journal of Chemical Technology and Biotechnology, 2019, 94, 3180-3189.	3.2	5
96	Promoting Simultaneous Desulfurization and Denitrification Performance of Al ₂ O ₃ @TiO ₂ Coreâ€"Shell Structure Adsorbents by Enhancing Oxidation Performance: Modification by Rare Earth Elements (La, Ce, and Y), Reaction Temperature, and Oxygen Concentration. Industrial & Damp: Engineering Chemistry Research, 2019, 58, 5423-5431.	3.7	5
97	One-step synthesis by redox co-precipitation method for low-dimensional Me-Mn bi-metal oxides (Me=Co, Ni, Sn) as SCR DeNOx catalysts. Environmental Science and Pollution Research, 2022, 29, 21210-21220.	5.3	5
98	Reduction of non-methane hydrocarbons in cooking oil fumes via adsorption on MFI: Effect of zeolitic framework composition. Separation and Purification Technology, 2022, 300, 121687.	7.9	5
99	Manganese oxides supported on ACF N by a oneâ€step redox method for the lowâ€temperature NOx reduction with NH 3 : effect of acid addition. Journal of Chemical Technology and Biotechnology, 2020, 95, 1380-1391.	3.2	4
100	Comparison of Selective Catalytic Reduction Performance of Mn–Co Biâ€Metal Oxides Prepared by Different Methods. ChemistrySelect, 2020, 5, 9409-9416.	1.5	4
101	Removal of NO Using a Dielectric Barrier Discharge Reactor in a Cycled Adsorption–Desorption and Decomposition System. Arabian Journal for Science and Engineering, 2017, 42, 1463-1474.	3.0	3
102	Influence mechanism of different precursors on the adsorption behavior of NOx over Cu ²⁺ ionâ€exchange ZSMâ€5. Journal of Chemical Technology and Biotechnology, 2019, 94, 3356-3366.	3.2	3
103	A novel semiâ€dry method for the simultaneous removal of Hg and SO 2 using spray drying absorption method. Journal of Chemical Technology and Biotechnology, 2020, 95, 1431-1440.	3.2	3
104	Ultrasoundâ€assisted modification of Al 2 O 3 @ TiO 2 e coreâ€shell structure adsorbent for simultaneous desulfurization and denitrification. Journal of Chemical Technology and Biotechnology, 2020, 95, 2261-2271.	3.2	3
105	Application of MCM-48 with large specific surface area for VOCs elimination: synthesis and hydrophobic functionalization for highly efficient adsorption. Environmental Science and Pollution Research, 2022, 29, 33595-33608.	5.3	3
106	Catalytic Oxidation of Nitric Oxide over Mn–Fe Metal Oxides Catalysts. Journal of Chemical Engineering of Japan, 2014, 47, 671-677.	0.6	2
107	Study on the Behavior of Divalent Metal Ion in the Crystallization of Hierarchical ZSM-11. Chemistry Letters, 2018, 47, 1158-1161.	1.3	2
108	Byproducts Generation Characteristics of Non-thermal Plasma for NO Conversion: Effect of Reaction Conditions. Plasma Chemistry and Plasma Processing, 2021, 41, 369-387.	2.4	2

#	Article	IF	CITATIONS
109	Mn – Co binary oxides for lowâ€ŧemperature catalytic oxidation of NO : effect of SO 2 and regeneration. Journal of Chemical Technology and Biotechnology, 2021, 96, 2956-2964.	3.2	2
110	Adsorption of Carbon Dioxide on Coconut Shell Activated Carbon. , 2010, , .		1
111	Fix of Zn species in silicaliteâ€⊋ via a facile crystallisation process control route. Micro and Nano Letters, 2020, 15, 451-454.	1.3	0