## Han-Bo-Ram Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2441117/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene. Journal of the<br>American Chemical Society, 2008, 130, 8152-8153.                              | 6.6  | 623       |
| 2  | Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid<br>Films, 2009, 517, 2563-2580.                                                  | 0.8  | 533       |
| 3  | Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene<br>Transistors. Nano Letters, 2009, 9, 4474-4478.                                 | 4.5  | 341       |
| 4  | Active MnO <sub>x</sub> Electrocatalysts Prepared by Atomic Layer Deposition for Oxygen Evolution and Oxygen Reduction Reactions. Advanced Energy Materials, 2012, 2, 1269-1277. | 10.2 | 298       |
| 5  | Flexible Wireless Temperature Sensors Based on Ni Microparticleâ€Filled Binary Polymer Composites.<br>Advanced Materials, 2013, 25, 850-855.                                     | 11.1 | 281       |
| 6  | Selective metal deposition at graphene line defects by atomic layer deposition. Nature Communications, 2014, 5, 4781.                                                            | 5.8  | 243       |
| 7  | Atomic Layer Deposition on 2D Materials. Chemistry of Materials, 2017, 29, 3809-3826.                                                                                            | 3.2  | 182       |
| 8  | One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Scientific Reports, 2015, 5, 8151.                             | 1.6  | 170       |
| 9  | Seeding Atomic Layer Deposition of High- <i>k</i> Dielectrics on Epitaxial Graphene with Organic<br>Self-Assembled Monolayers. ACS Nano, 2011, 5, 5223-5232.                     | 7.3  | 167       |
| 10 | Wafer-scale, conformal and direct growth of MoS2 thin films by atomic layer deposition. Applied Surface Science, 2016, 365, 160-165.                                             | 3.1  | 119       |
| 11 | Self-Assembly Based Plasmonic Arrays Tuned by Atomic Layer Deposition for Extreme Visible Light<br>Absorption. Nano Letters, 2013, 13, 3352-3357.                                | 4.5  | 118       |
| 12 | Hydrophobicity of Rare Earth Oxides Grown by Atomic Layer Deposition. Chemistry of Materials, 2015, 27, 148-156.                                                                 | 3.2  | 106       |
| 13 | Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells. ACS<br>Nano, 2011, 5, 1495-1504.                                                     | 7.3  | 93        |
| 14 | High-Quality Cobalt Thin Films by Plasma-Enhanced Atomic Layer Deposition. Electrochemical and Solid-State Letters, 2006, 9, G323.                                               | 2.2  | 90        |
| 15 | Thermal and plasma enhanced atomic layer deposition ruthenium and electrical characterization as a metal electrode. Microelectronic Engineering, 2008, 85, 39-44.                | 1.1  | 89        |
| 16 | Growth of Pt Nanowires by Atomic Layer Deposition on Highly Ordered Pyrolytic Graphite. Nano<br>Letters, 2013, 13, 457-463.                                                      | 4.5  | 86        |
| 17 | Atomic Layer Deposition of Ni Thin Films and Application to Area-Selective Deposition. Journal of the Electrochemical Society, 2011, 158, D1.                                    | 1.3  | 79        |
| 18 | Area-Selective Atomic Layer Deposition Using Si Precursors as Inhibitors. Chemistry of Materials, 2018, 30, 7603-7610.                                                           | 3.2  | 78        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Atomic Layer Deposition of CdS Quantum Dots for Solid‣tate Quantum Dot Sensitized Solar Cells.<br>Advanced Energy Materials, 2011, 1, 1169-1175.                                                                       | 10.2 | 76        |
| 20 | Atomic Layer Deposition for Semiconductors. , 2014, , .                                                                                                                                                                |      | 75        |
| 21 | Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides. Scientific Reports, 2016, 6, 18754.                                                                                                                 | 1.6  | 74        |
| 22 | Reaction Mechanism of Area-Selective Atomic Layer Deposition for Al <sub>2</sub> O <sub>3</sub><br>Nanopatterns. ACS Applied Materials & Interfaces, 2017, 9, 41607-41617.                                             | 4.0  | 73        |
| 23 | Microstructure-Dependent Nucleation in Atomic Layer Deposition of Pt on TiO <sub>2</sub> .<br>Chemistry of Materials, 2012, 24, 279-286.                                                                               | 3.2  | 72        |
| 24 | Recent Advances in Atomic Layer Deposition. Chemistry of Materials, 2016, 28, 1943-1947.                                                                                                                               | 3.2  | 72        |
| 25 | Deposition of Ultrathin Polythiourea Films by Molecular Layer Deposition. Chemistry of Materials, 2010, 22, 5563-5569.                                                                                                 | 3.2  | 71        |
| 26 | Improved Corrosion Resistance and Mechanical Properties of CrN Hard Coatings with an Atomic Layer<br>Deposited Al <sub>2</sub> O <sub>3</sub> Interlayer. ACS Applied Materials & Interfaces, 2015, 7,<br>26716-26725. | 4.0  | 69        |
| 27 | Fluorine functionalization of epitaxial graphene for uniform deposition of thin high- $\hat{I}^{\circ}$ dielectrics. Carbon, 2012, 50, 2307-2314.                                                                      | 5.4  | 66        |
| 28 | High Quality Area-Selective Atomic Layer Deposition Co Using Ammonia Gas as a Reactant. Journal of the Electrochemical Society, 2010, 157, D10.                                                                        | 1.3  | 65        |
| 29 | Nucleation-Controlled Growth of Nanoparticles by Atomic Layer Deposition. Chemistry of Materials, 2012, 24, 4051-4059.                                                                                                 | 3.2  | 57        |
| 30 | Internal and External Atomic Steps in Graphite Exhibit Dramatically Different Physical and Chemical<br>Properties. ACS Nano, 2015, 9, 3814-3819.                                                                       | 7.3  | 57        |
| 31 | Nanoconfined Atomic Layer Deposition of TiO 2 /Pt Nanotubes: Toward Ultrasmall Highly Efficient<br>Catalytic Nanorockets. Advanced Functional Materials, 2017, 27, 1700598.                                            | 7.8  | 54        |
| 32 | Highly conductive and flexible fiber for textile electronics obtained by extremely low-temperature atomic layer deposition of Pt. NPG Asia Materials, 2016, 8, e331-e331.                                              | 3.8  | 51        |
| 33 | Distribution of oxygen functional groups of graphene oxide obtained from low-temperature atomic layer deposition of titanium oxide. RSC Advances, 2017, 7, 13979-13984.                                                | 1.7  | 51        |
| 34 | Vapor transport deposition and epitaxy of orthorhombic SnS on glass and NaCl substrates. Applied Physics Letters, 2013, 103, .                                                                                         | 1.5  | 49        |
| 35 | A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon, 2017, 116, 553-561.                                                                                              | 5.4  | 45        |
| 36 | Atomic level deposition to extend Moore's law and beyond. International Journal of Extreme<br>Manufacturing, 2020, 2, 022002.                                                                                          | 6.3  | 44        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Nucleation and Growth of the HfO <sub>2</sub> Dielectric Layer for Graphene-Based Devices.<br>Chemistry of Materials, 2015, 27, 5868-5877.                                                                                                       | 3.2 | 43        |
| 38 | Plasma-Enhanced Atomic Layer Deposition of Cobalt Using Cyclopentadienyl Isopropyl<br>Acetamidinato-Cobalt as a Precursor. Japanese Journal of Applied Physics, 2010, 49, 05FA10.                                                                | 0.8 | 42        |
| 39 | Atomic layer deposited aluminum oxide films on graphite and graphene studied by XPS and AFM. Physica<br>Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 398-401.                                                                | 0.8 | 41        |
| 40 | Effect of O <sub>3</sub> on Growth of Pt by Atomic Layer Deposition. Journal of Physical Chemistry C, 2014, 118, 12325-12332.                                                                                                                    | 1.5 | 41        |
| 41 | Atomic layer deposition of Y-stabilized ZrO2 for advanced DRAM capacitors. Journal of Alloys and Compounds, 2017, 722, 307-312.                                                                                                                  | 2.8 | 40        |
| 42 | Comparative study of the growth characteristics and electrical properties of atomic-layer-deposited<br>HfO <sub>2</sub> films obtained from metal halide and amide precursors. Journal of Materials<br>Chemistry C, 2018, 6, 7367-7376.          | 2.7 | 40        |
| 43 | Effects of Al Precursors on Deposition Selectivity of Atomic Layer Deposition of<br>Al <sub>2</sub> O <sub>3</sub> Using Ethanethiol Inhibitor. Chemistry of Materials, 2020, 32, 8921-8929.                                                     | 3.2 | 40        |
| 44 | Plasma-Enhanced Atomic Layer Deposition of Ni. Japanese Journal of Applied Physics, 2010, 49, 05FA11.                                                                                                                                            | 0.8 | 38        |
| 45 | The low temperature atomic layer deposition of ruthenium and the effect of oxygen exposure. Journal of Materials Chemistry, 2012, 22, 25154.                                                                                                     | 6.7 | 36        |
| 46 | Area Selective Atomic Layer Deposition of Cobalt Thin Films. ECS Transactions, 2008, 16, 219-225.                                                                                                                                                | 0.3 | 35        |
| 47 | Atomic Layer Deposition of Co Using N2â^•H2 Plasma as a Reactant. Journal of the Electrochemical Society, 2011, 158, H1179.                                                                                                                      | 1.3 | 33        |
| 48 | Highly-conformal nanocrystalline molybdenum nitride thin films by atomic layer deposition as a<br>diffusion barrier against Cu. Journal of Alloys and Compounds, 2016, 663, 651-658.                                                             | 2.8 | 33        |
| 49 | Spontaneous Formation of Vertical Magneticâ€Metalâ€Nanorod Arrays During Plasmaâ€Enhanced Atomic<br>Layer Deposition. Small, 2008, 4, 2247-2254.                                                                                                 | 5.2 | 32        |
| 50 | Growth characteristics and electrical properties of SiO2 thin films prepared using plasma-enhanced<br>atomic layer deposition and chemical vapor deposition with an aminosilane precursor. Journal of<br>Materials Science, 2016, 51, 5082-5091. | 1.7 | 31        |
| 51 | Icephobic Coating through a Self-Formed Superhydrophobic Surface Using a Polymer and Microsized<br>Particles. ACS Applied Materials & Interfaces, 2022, 14, 3334-3343.                                                                           | 4.0 | 31        |
| 52 | Molecular oxidation of surface –CH3 during atomic layer deposition of Al2O3 with H2O, H2O2, and<br>O3: A theoretical study. Applied Surface Science, 2018, 457, 376-380.                                                                         | 3.1 | 29        |
| 53 | A controlled growth of WNx and WCx thin films prepared by atomic layer deposition. Materials<br>Letters, 2016, 168, 218-222.                                                                                                                     | 1.3 | 28        |
| 54 | Complementary Unipolar WS <sub>2</sub> Fieldâ€Effect Transistors Using Fermi‣evel Depinning Layers.<br>Advanced Electronic Materials, 2016, 2, 1500278.                                                                                          | 2.6 | 28        |

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Reversible Liquid Adhesion Switching of Superamphiphobic Pd-Decorated Ag Dendrites via Gas-Induced<br>Structural Changes. Chemistry of Materials, 2015, 27, 4964-4971.            | 3.2 | 27        |
| 56 | Formation of Continuous Pt Films on the Graphite Surface by Atomic Layer Deposition with Reactive O <sub>3</sub> . Chemistry of Materials, 2015, 27, 6802-6809.                   | 3.2 | 27        |
| 57 | Plasma-enhanced atomic layer deposition of SnO2 thin films using SnCl4 and O2 plasma. Materials<br>Letters, 2016, 166, 163-166.                                                   | 1.3 | 26        |
| 58 | ?The Degradation of Deposition Blocking Layer during Area Selective Plasma Enhanced Atomic Layer Deposition of Cobalt. Journal of the Korean Physical Society, 2010, 56, 104-107. | 0.3 | 26        |
| 59 | Nitride mediated epitaxy of CoSi2 through self-interlayer-formation of plasma-enhanced atomic layer deposition Co. Applied Physics Letters, 2007, 90, 213509.                     | 1.5 | 25        |
| 60 | Area Selective Atomic Layer Deposition by Microcontact Printing with a Water-Soluble Polymer.<br>Journal of the Electrochemical Society, 2010, 157, D600.                         | 1.3 | 24        |
| 61 | Plasma-enhanced atomic layer deposition of Co using Co(MeCp)2 precursor. Journal of Energy Chemistry, 2013, 22, 403-407.                                                          | 7.1 | 23        |
| 62 | Contact resistance reduction using Fermi level de-pinning layer for MoS <inf>2</inf> FETs. ,<br>2014, , .                                                                         |     | 21        |
| 63 | In situ surface cleaning on a Ge substrate using TMA and MgCp <sub>2</sub> for<br>HfO <sub>2</sub> -based gate oxides. Journal of Materials Chemistry C, 2015, 3, 4852-4858.      | 2.7 | 20        |
| 64 | Initial Stage Growth during Plasmaâ€Enhanced Atomic Layer Deposition of Cobalt. Chemical Vapor<br>Deposition, 2012, 18, 41-45.                                                    | 1.4 | 19        |
| 65 | Analysis of Defect Recovery in Reduced Graphene Oxide and Its Application as a Heater for Self-Healing Polymers. ACS Applied Materials & Interfaces, 2019, 11, 16804-16814.       | 4.0 | 19        |
| 66 | A Selective Toolbox for Nanofabrication. Chemistry of Materials, 2020, 32, 3323-3324.                                                                                             | 3.2 | 19        |
| 67 | Effects of Cl-Based Ligand Structures on Atomic Layer Deposited HfO <sub>2</sub> . Journal of Physical Chemistry C, 2016, 120, 5958-5967.                                         | 1.5 | 18        |
| 68 | Effect of h-BN coating on nucleate boiling heat transfer performance in pool boiling. Experimental<br>Thermal and Fluid Science, 2018, 98, 12-19.                                 | 1.5 | 18        |
| 69 | Thermal atomic layer deposition of metallic Ru using H2O as a reactant. Applied Surface Science, 2019, 488, 896-902.                                                              | 3.1 | 17        |
| 70 | Tunable Color Coating of E-Textiles by Atomic Layer Deposition of Multilayer<br>TiO <sub>2</sub> /Al <sub>2</sub> O <sub>3</sub> Films. Langmuir, 2020, 36, 2794-2801.            | 1.6 | 17        |
| 71 | Self-formation of dielectric layer containing CoSi2 nanocrystals by plasma-enhanced atomic layer deposition. Journal of Crystal Growth, 2010, 312, 2215-2219.                     | 0.7 | 16        |
| 72 | The Era of Atomic Crafting. Chemistry of Materials, 2019, 31, 1471-1472.                                                                                                          | 3.2 | 16        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Highly Sensitive, Patternable Organic Films at the Nanoscale Made by Bottom-Up Assembly. ACS Applied<br>Materials & Interfaces, 2013, 5, 3691-3696.                                                                                          | 4.0 | 15        |
| 74 | Comparison of hydrogen sulfide gas and sulfur powder for synthesis of molybdenum disulfide<br>nanosheets. Current Applied Physics, 2016, 16, 691-695.                                                                                        | 1.1 | 15        |
| 75 | A facile method for the selective decoration of graphene defects based on a galvanic displacement reaction. NPG Asia Materials, 2016, 8, e262-e262.                                                                                          | 3.8 | 15        |
| 76 | Water-Erasable Memory Device for Security Applications Prepared by the Atomic Layer Deposition of GeO <sub>2</sub> . Chemistry of Materials, 2018, 30, 830-840.                                                                              | 3.2 | 15        |
| 77 | High efficiency n-Si/p-Cu2O core-shell nanowires photodiode prepared by atomic layer deposition of Cu2O on well-ordered Si nanowires array. Electronic Materials Letters, 2016, 12, 404-410.                                                 | 1.0 | 14        |
| 78 | Growth mechanism of Co thin films formed by plasma-enhanced atomic layer deposition using NH3 as plasma reactant. Current Applied Physics, 2017, 17, 333-338.                                                                                | 1.1 | 14        |
| 79 | Very high frequency plasma reactant for atomic layer deposition. Applied Surface Science, 2016, 387, 109-117.                                                                                                                                | 3.1 | 13        |
| 80 | Dual Role of Sb-Incorporated Buffer Layers for High Efficiency Cuprous Oxide Photocathodic<br>Performance: Remarkably Enhanced Crystallinity and Effective Hole Transport. ACS Sustainable<br>Chemistry and Engineering, 2017, 5, 8213-8221. | 3.2 | 13        |
| 81 | Reaction Mechanism of Pt Atomic Layer Deposition on Various Textile Surfaces. Chemistry of Materials, 2019, 31, 8995-9002.                                                                                                                   | 3.2 | 13        |
| 82 | Evaluation of silicon tetrahalide precursors for low-temperature thermal atomic layer deposition of silicon nitride. Applied Surface Science, 2021, 565, 150603.                                                                             | 3.1 | 13        |
| 83 | Supercritical Fluid Deposition of Conformal SrTiO[sub 3] Films with Composition Uniformity in Nanocontact Holes. Electrochemical and Solid-State Letters, 2009, 12, D45.                                                                     | 2.2 | 12        |
| 84 | Fabrication of 50 nm scale Pt nanostructures by block copolymer (BCP) and its characteristics of surface-enhanced Raman scattering (SERS). RSC Advances, 2016, 6, 70756-70762.                                                               | 1.7 | 11        |
| 85 | Copper indium selenide water splitting photoanodes with artificially designed heterophasic blended structure and their high photoelectrochemical performances. Nano Energy, 2018, 46, 1-10.                                                  | 8.2 | 11        |
| 86 | Moisture barrier properties of low-temperature atomic layer deposited Al2O3 using various oxidants.<br>Ceramics International, 2019, 45, 19105-19112.                                                                                        | 2.3 | 11        |
| 87 | Self-Formation of Superhydrophobic Surfaces through Interfacial Energy Engineering between<br>Liquids and Particles. Langmuir, 2021, 37, 5356-5363.                                                                                          | 1.6 | 11        |
| 88 | Surface Energy Change of Atomic-Scale Metal Oxide Thin Films by Phase Transformation. ACS Nano, 2020, 14, 676-687.                                                                                                                           | 7.3 | 10        |
| 89 | Real-time detection of chlorine gas using Ni/Si shell/core nanowires. Nanoscale Research Letters, 2015, 10, 18.                                                                                                                              | 3.1 | 9         |
| 90 | Area-selective chemical vapor deposition of Co for Cu capping layer. Current Applied Physics, 2016, 16, 88-92.                                                                                                                               | 1.1 | 9         |

| #   | Article                                                                                                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Atomic layer deposition of 1D and 2D nickel nanostructures on graphite. Nanotechnology, 2017, 28, 115301.                                                                                                                                                                                                                                      | 1.3 | 9         |
| 92  | Promoting lithium electrodeposition towards the bottom of 3-D copper meshes in lithium-based batteries. Journal of Power Sources, 2020, 472, 228495.                                                                                                                                                                                           | 4.0 | 9         |
| 93  | Atomic Layer Modulation of Multicomponent Thin Films through Combination of Experimental and Theoretical Approaches. Chemistry of Materials, 2021, 33, 4435-4444.                                                                                                                                                                              | 3.2 | 9         |
| 94  | Plasma-enhanced atomic layer deposition of Co on metal surfaces. Surface and Coatings Technology, 2015, 264, 60-65.                                                                                                                                                                                                                            | 2.2 | 8         |
| 95  | Circular Doubleâ€Patterning Lithography Using a Block Copolymer Template and Atomic Layer<br>Deposition. Advanced Materials Interfaces, 2018, 5, 1800054.                                                                                                                                                                                      | 1.9 | 8         |
| 96  | Elucidating the Reaction Mechanism of Atomic Layer Deposition of Al <sub>2</sub> O <sub>3</sub><br>with a Series of Al(CH <sub>3</sub> ) <sub><i>x</i></sub> Cl <sub>3–<i>x</i></sub> and<br>Al(C <sub><i>y</i></sub> H <sub>2<i>y</i>+1</sub> ) <sub>3</sub> Precursors. Journal of the American<br>Chemical Society, 2022, 144, 11757-11766. | 6.6 | 8         |
| 97  | Interlayer-assisted atomic layer deposition of MgO as a magnetic tunneling junction insulators.<br>Journal of Alloys and Compounds, 2018, 747, 505-510.                                                                                                                                                                                        | 2.8 | 7         |
| 98  | Silicidation of Co/Si Core Shell Nanowires. Journal of the Electrochemical Society, 2012, 159, K146-K151.                                                                                                                                                                                                                                      | 1.3 | 6         |
| 99  | Toward Enhanced Humidity Stability of Triboelectric Mechanical Sensors via Atomic Layer Deposition.<br>Nanomaterials, 2021, 11, 1795.                                                                                                                                                                                                          | 1.9 | 6         |
| 100 | Supercritical Fluid Deposition of SiO2Thin Films: Growth Characteristics and Film Properties. Journal of the Electrochemical Society, 2011, 159, D46-D49.                                                                                                                                                                                      | 1.3 | 5         |
| 101 | <i>In-Situ</i> Synchrotron X-Ray Scattering Study of Thin Film Growth by Atomic Layer Deposition.<br>Journal of Nanoscience and Nanotechnology, 2011, 11, 1577-1580.                                                                                                                                                                           | 0.9 | 5         |
| 102 | Ru nanodot synthesis using CO2 supercritical fluid deposition. Journal of Physics and Chemistry of Solids, 2013, 74, 664-667.                                                                                                                                                                                                                  | 1.9 | 5         |
| 103 | Cobalt titanium nitride amorphous metal alloys by atomic layer deposition. Journal of Alloys and Compounds, 2018, 737, 684-692.                                                                                                                                                                                                                | 2.8 | 5         |
| 104 | Preparation of a hydrophobic cerium oxide nanoparticle coating with polymer binder via a facile solution route. Ceramics International, 2020, 46, 12209-12215.                                                                                                                                                                                 | 2.3 | 5         |
| 105 | The Structure of BC3N Tubular Nanofiber Synthesized by Using PECVD. Journal of the Korean Physical Society, 2007, 51, 125.                                                                                                                                                                                                                     | 0.3 | 5         |
| 106 | Growth modulation of atomic layer deposition of HfO <sub>2</sub> by combinations of<br>H <sub>2</sub> O and O <sub>3</sub> reactants. Dalton Transactions, 2021, 50, 17935-17944.                                                                                                                                                              | 1.6 | 5         |
| 107 | Stress dependence of growth mode change of epitaxial layered cobaltite Î <sup>3</sup> -Na0.7CoO2. Applied Surface<br>Science, 2007, 254, 436-440.                                                                                                                                                                                              | 3.1 | 4         |
| 108 | Effects of TaN Diffusion Barrier on Cu-Gate ZnO:N Thin-Film Transistors. IEEE Electron Device Letters, 2016, 37, 599-602.                                                                                                                                                                                                                      | 2.2 | 4         |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Formation of Ni silicide from atomic layer deposited Ni. Current Applied Physics, 2016, 16, 720-725.                                                                                                                                       | 1.1 | 4         |
| 110 | Conduction mechanism change with transport oxide layer thickness in oxide hetero-interface diode.<br>Applied Physics Letters, 2017, 111, 053506.                                                                                           | 1.5 | 4         |
| 111 | Uniform color coating of multilayered TiO2/Al2O3 films by atomic layer deposition. Journal of<br>Coatings Technology Research, 2017, 14, 177-183.                                                                                          | 1.2 | 4         |
| 112 | Effect of molecular backbone structure on vapor phase coupling reaction between<br>diiso(thio)cyanates with diamines, diols, and dithiols. Progress in Organic Coatings, 2020, 140, 105509.                                                | 1.9 | 4         |
| 113 | Interfacial reactions and mechanical properties of transient liquid-phase bonding joints in Cu/Sn/Ni(P)<br>and Ni/Sn/(OSP)Cu structures for power modules. Journal of Materials Science: Materials in<br>Electronics, 2021, 32, 3324-3333. | 1.1 | 4         |
| 114 | Photocatalytic Effect of Ag/TiO <sub>2</sub> Nanotubes Fabricated Using 40 nm-Scale BCP<br>Lithography. Nanoscience and Nanotechnology Letters, 2017, 9, 50-55.                                                                            | 0.4 | 4         |
| 115 | High quality epitaxial CoSi2 using plasma nitridation-mediated epitaxy: The effects of the capping layer.<br>Journal of Applied Physics, 2007, 102, 094509.                                                                                | 1.1 | 3         |
| 116 | Vapor phase synthesis of TaS <sub>2</sub> nanocrystals with iodine as transport agent. Japanese<br>Journal of Applied Physics, 2017, 56, 045501.                                                                                           | 0.8 | 3         |
| 117 | Cobalt and nickel atomic layer depositions for contact applications. , 2009, , .                                                                                                                                                           |     | 2         |
| 118 | Dataset for TiN Thin Films Prepared by Plasma-Enhanced Atomic Layer Deposition Using<br>Tetrakis(dimethylamino)titanium (TDMAT) and Titanium Tetrachloride (TiCl4) Precursor. Data in Brief,<br>2020, 31, 105777.                          | 0.5 | 2         |
| 119 | Amorphous TiO2/p-Si Heterojunction Photodiode Prepared by Low-Temperature Atomic Layer<br>Deposition. Nanoscience and Nanotechnology Letters, 2018, 10, 800-804.                                                                           | 0.4 | 2         |
| 120 | The Benefits of Atomic Layer Deposition in Non-semiconductor Applications; Producing Metallic Nanomaterials and Fabrication of Flexible Display. ECS Transactions, 2009, 25, 101-111.                                                      | 0.3 | 1         |
| 121 | Atomic layer deposition for nanoscale contact applications. , 2011, , .                                                                                                                                                                    |     | 1         |
| 122 | In Honor of Professor Markku LeskeläChemistry of Materials, 2018, 30, 4469-4474.                                                                                                                                                           | 3.2 | 1         |
| 123 | Science against Pseudoscience. Chemistry of Materials, 2019, 31, 7113-7115.                                                                                                                                                                | 3.2 | 1         |
| 124 | Surface Wettability of Nitrogen-Doped TiO2 Films Prepared by Atomic Layer Deposition Using NH4OH as the Doping Source. Nanoscience and Nanotechnology Letters, 2018, 10, 779-783.                                                          | 0.4 | 1         |
| 125 | Formation of Silicide Nanowires by Annealing of Atomic Layer Deposition Cobalt/Silicon Core-Shell Nanowires. ECS Transactions, 2009, 25, 157-161.                                                                                          | 0.3 | 0         |
| 126 | Nanomaterials fabrication using advanced thin film deposition and nanohybrid process. , 2009, , .                                                                                                                                          |     | 0         |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Atomic Layer Deposition: Circular Double-Patterning Lithography Using a Block Copolymer Template<br>and Atomic Layer Deposition (Adv. Mater. Interfaces 16/2018). Advanced Materials Interfaces, 2018, 5,<br>1870078. | 1.9 | 0         |
| 128 | Surface Functionalization for Conductivity Improvement by Metal Atomic Layer Deposition. , 2018, , .                                                                                                                  |     | 0         |
| 129 | Growth of Atomic Layer Deposition Platinum on TiO <sub>2</sub> . Journal of the Korean Institute of Surface Engineering, 2015, 48, 38-42.                                                                             | 0.1 | 0         |
| 130 | PEALD-TiN based Thin Films for High Performance Metallic Bipolar Plates of PEMFCs. , 0, , .                                                                                                                           |     | 0         |