
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2440743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In situ FTIR spectra of pyridine adsorbed on SiO2–Al2O3, TiO2, ZrO2 and CeO2: general considerations for the identification of acid sites on surfaces of finely divided metal oxides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 190, 261-274.	4.7	485
2	Surface Reactions of Acetone on Al2O3, TiO2, ZrO2, and CeO2:  IR Spectroscopic Assessment of Impacts of the Surface Acidâ^'Base Properties. Langmuir, 2001, 17, 768-774.	3.5	198
3	Carbon monoxide $\hat{a} \in$ " A low temperature infrared probe for the characterization of hydroxyl group properties on metal oxide surfaces. Materials Chemistry and Physics, 1987, 17, 201-215.	4.0	183
4	Oxide-catalyzed conversion of acetic acid into acetone: an FTIR spectroscopic investigation. Applied Catalysis A: General, 2003, 243, 81-92.	4.3	164
5	Promotion of the hydrogen peroxide decomposition activity of manganese oxide catalysts. Applied Catalysis A: General, 1999, 181, 171-179.	4.3	159
6	Microemulsion-Based Synthesis of CeO2Powders with High Surface Area and High-Temperature Stabilities. Langmuir, 2004, 20, 11223-11233.	3.5	142
7	An infrared spectroscopic study of the adsorption and mechanism of surface reactions of 2-propanol on ceria. Journal of Catalysis, 1983, 80, 114-122.	6.2	109
8	An infrared spectroscopy study of carbon monoxide adsorption on \$alpha;-chromia surfaces: Probing oxidation states of coordinatively unsaturated surface cations. Journal of Catalysis, 1989, 119, 311-321.	6.2	98
9	Surface Chemistry of Acetone on Metal Oxides:Â IR Observation of Acetone Adsorption and Consequent Surface Reactions on Silicaâ^'Alumina versus Silica and Alumina. Langmuir, 2000, 16, 430-436.	3.5	93
10	Controlled Synthesis of ZrO2 Nanoparticles with Tailored Size, Morphology and Crystal Phases via Organic/Inorganic Hybrid Films. Scientific Reports, 2018, 8, 3695.	3.3	92
11	Physicochemical investigation of calcined chromia-coated silica and alumina catalysts: Characterization of chromium-oxygen species. Applied Catalysis, 1986, 21, 359-377.	0.8	87
12	Infrared spectroscopic studies of the reactions of alcohols over group IVB metal oxide catalysts. Part 3.—Ethanol over TiO2, ZrO2and HfO2, and general conclusions from parts 1 to 3. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 2661-2668.	1.7	75
13	Structure and surface properties of supported oxides. Materials Chemistry and Physics, 1985, 13, 301-314.	4.0	71
14	IR Investigation of the Oxidation of Propane and Likely C3 and C2 Products over Group IVB Metal Oxide Catalysts. Journal of Physical Chemistry B, 2002, 106, 12747-12756.	2.6	71
15	Infrared spectroscopic studies of the reactions of alcohols over group IVB metal oxide catalysts. Part 1.—Propan-2-ol over TiO2, ZrO2 and HfO2. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 1723.	1.0	69
16	Infrared spectroscopic studies of the reactions of alcohols over group IVB metal oxide catalysts. Part 2.—Methanol over TiO2, ZrO2and HfO2. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 2655-2659.	1.7	69
17	Influence of phosphonation and phosphation on surface acid–base and morphological properties of CaO as investigated by in situ FTIR spectroscopy and electron microscopy. Journal of Colloid and Interface Science, 2006, 303, 9-17.	9.4	65
18	Adsorption and surface reactions of pyridine on pure and doped ceria catalysts as studied by infrared spectroscopy. Journal of Molecular Catalysis, 1989, 51, 209-220.	1.2	63

#	Article	IF	CITATIONS
19	Qualitative and Quantitative Assessments of Acid and Base Sites Exposed on Polycrystalline MgO Surfaces:Â Thermogravimetric, Calorimetric, and in-Situ FTIR Spectroscopic Study Combination. Journal of Physical Chemistry B, 2004, 108, 13379-13386.	2.6	63
20	Low-temperature Synthesis of Hausmannite Mn3O4. Journal of Materials Science Letters, 1999, 18, 209-211.	0.5	59
21	Synthesis of high surface area titania powders via basic hydrolysis of titanium(IV) isopropoxide. Powder Technology, 1997, 92, 233-239.	4.2	57
22	Ketonization of acetic acid vapour over polycrystalline magnesia: in situ Fourier transform infrared spectroscopy and kinetic studies. Journal of Catalysis, 2005, 230, 109-122.	6.2	56
23	Characterization of the thermal genesis course of manganese oxides from inorganic precursors. Thermochimica Acta, 1992, 210, 103-121.	2.7	55
24	In Situ FTIR Spectroscopic Study of 2-Propanol Adsorptive and Catalytic Interactions on Metal-Modified Aluminas. Langmuir, 2001, 17, 4025-4034.	3.5	55
25	Monopropellant decomposition catalysts. Applied Catalysis A: General, 2002, 234, 145-153.	4.3	51
26	Exploring anatase-TiO2 doped dilutely with transition metal ions as nano-catalyst for H2O2 decomposition: Spectroscopic and kinetic studies. Applied Catalysis A: General, 2013, 452, 214-221.	4.3	48
27	Chromia on Silica and Alumina Catalysts. Zeitschrift Fur Physikalische Chemie, 1991, 171, 75-96.	2.8	47
28	Bulk and surface characteristics of pure and alkalized Mn2O3: TG, IR, XRD, XPS, specific adsorption and redox catalytic studies. New Journal of Chemistry, 1998, 22, 875-882.	2.8	46
29	Synthesis and surface characterization of todorokite-type microporous manganese oxides: implications for shape-selective oxidation catalysts. Microporous and Mesoporous Materials, 2004, 67, 43-52.	4.4	43
30	Acidity-Reactivity Relationships in Catalytic Esterification over Ammonium Sulfate-Derived Sulfated Zirconia. Catalysts, 2017, 7, 204.	3.5	41
31	Recovery of ethene-selective FeOx/Al2O3 ethanol dehydration catalyst from industrial chemical wastes. Applied Catalysis A: General, 2000, 199, 83-92.	4.3	40
32	Surface composition, charge and texture of active alumina powders recovered from aluminum dross tailings chemical waste. Powder Technology, 2003, 132, 137-144.	4.2	40
33	Interfacial chemistry in the preparation of catalytic potassium-modified aluminas. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 2527.	1.7	39
34	Thermal decomposition and creation of reactive solid surfaces. Journal of Thermal Analysis, 1986, 31, 825-834.	0.6	37
35	Influence of CuOx additives on CO oxidation activity and related surface and bulk behaviours of Mn2O3, Cr2O3 and WO3 catalysts. Applied Catalysis A: General, 2000, 198, 247-259.	4.3	37
36	Generation of metal oxide nanoparticles in optimised microemulsions. Journal of Colloid and Interface Science, 2007, 312, 68-75.	9.4	37

#	Article	IF	CITATIONS
37	Formation of carboxy species at CO/Al2O3 interfaces. Impacts of surface hydroxylation, potassium alkalization and hydrogenation as assessed by in situ FTIR spectroscopy. Physical Chemistry Chemical Physics, 2004, 6, 2502.	2.8	35
38	Characterization of nano-cerias synthesized in microemulsions by N2 sorptiometry and electron microscopy. Journal of Colloid and Interface Science, 2006, 302, 501-508.	9.4	35
39	Temperature-programmed reduction of calcined chromia-coated alumina and silica catalysts: probing chromium (VI)-oxygen species. Thermochimica Acta, 1996, 285, 167-179.	2.7	34
40	CO and CH4 total oxidation over manganese oxide supported on ZrO2, TiO2, TiO2–Al2O3 and SiO2–Al2O3 catalysts. New Journal of Chemistry, 1999, 23, 1197-1202.	2.8	34
41	Surface Reactivity of Iron Oxide Pigmentary Powders toward Atmospheric Components: XPS, FESEM, and Gravimetry of CO and CO2Adsorption. Journal of Colloid and Interface Science, 1997, 194, 482-488.	9.4	33
42	Chromia on Silica and Alumina Catalysts: Temperature-Programmed Reduction and Structure of Surface Chromates. Zeitschrift Fur Physikalische Chemie, 1994, 186, 231-244.	2.8	32
43	Synthesis and characterization of catalytic titanias via hydrolysis of titanium (IV) isopropoxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 132, 31-44.	4.7	32
44	Recovery of high surface area alumina from aluminium dross tailings. Journal of Chemical Technology and Biotechnology, 2000, 75, 394-402.	3.2	32
45	Nonstoichiometry and surface characterization of chromia gel. Journal of Colloid and Interface Science, 1981, 81, 468-476.	9.4	31
46	Ultraviolet photodesorption of CO from NiO as measured by infrared spectroscopy. Surface Science, 1991, 255, 295-302.	1.9	31
47	Preparation and characterization of sol–gel derived mesoporous titania spheroids. Powder Technology, 2001, 120, 256-263.	4.2	31
48	HT-XRD, IR and Raman characterization studies of metastable phases emerging in the thermal genesis course of monoclinic zirconia via amorphous zirconium hydroxide: impacts of sulfate and phosphate additives. Thermochimica Acta, 2002, 387, 29-38.	2.7	31
49	Temperature-programmed and X-ray diffractometry studies of hydrogen-reduction course and products of WO3 powder: Influence of reduction parameters. Thermochimica Acta, 2011, 523, 90-96.	2.7	30
50	Surface chemical and photocatalytic consequences of Ca-doping of BiFeO3 as probed by XPS and H2O2 decomposition studies. Applied Surface Science, 2014, 317, 929-934.	6.1	30
51	Effect of foreign ion additives on ceria surface reactivity towards isopropanol adsorption and decomposition: An infrared investigation. Journal of Molecular Catalysis, 1990, 57, 367-378.	1.2	29
52	Thermogravimetry of WO3 reduction in hydrogen: Kinetic characterization of autocatalytic effects. Powder Technology, 1993, 74, 31-37.	4.2	29
53	Surface Reactivity of Iron Oxide Pigmentary Powders toward Atmospheric Components: XPS and Gravimetry of Oxygen and Water Vapor Adsorption. Journal of Colloid and Interface Science, 1996, 183, 320-328.	9.4	28
54	A novel synthesis of high-area alumina via H2O2-precipitated boehmite from sodium aluminate solutions. Journal of Chemical Technology and Biotechnology, 1998, 72, 320-328.	3.2	28

#	Article	IF	CITATIONS
55	Thermal decomposition and the creation of reactive solid surfaces. V. The genesis course of the WO3 catalyst from its ammonium paratungstate precursor. Thermochimica Acta, 1988, 129, 187-196.	2.7	27
56	Decomposition of Cd(CH3COO)2 · 2H2O and creation of reactive solid surfaces - a spectrothermal investigation. Reactivity of Solids, 1990, 8, 197-208.	0.3	27
57	Stability of surface chromate – A physicochemical investigation in relevance to environmental reservations about calcined chromia catalysts. Applied Catalysis A: General, 1998, 171, 315-324.	4.3	27
58	Dawsonite-Type Precursors for Catalytic Al, Cr, and Fe Oxides:  Synthesis and Characterization. Chemistry of Materials, 2005, 17, 6797-6804.	6.7	27
59	A spectroscopic investigation of isopropanol and methylbutynol as infrared reactive probes for base sites on polycrystalline metal oxide surfaces. Journal of Molecular Catalysis A, 2002, 178, 125-137.	4.8	26
60	Characterization of mesoporous VOx/MCM-41 composite materials obtained via post-synthesis impregnation. Applied Surface Science, 2010, 256, 6179-6185.	6.1	26
61	Effect of processing parameters on the kinetics of decomposition of certain simple anhydrous carbonates. Powder Technology, 1982, 33, 161-165.	4.2	25
62	Supported rhodium catalysts. Support effects on state and dispersion of the rhodium. Surface and Interface Analysis, 1988, 12, 239-246.	1.8	25
63	Low-Temperature Catalytic CO Oxidation Over Non-Noble, Efficient Chromia in Reduced Graphene Oxide and Graphene Oxide Nanocomposites. Catalysts, 2020, 10, 105.	3.5	25
64	X-Ray Photoelectron Spectroscopy and Diffractometry of MnO x Catalysts: Surface to Bulk Composition Relationships. Zeitschrift Fur Physikalische Chemie, 1992, 176, 97-116.	2.8	24
65	Surface texture and specific adsorption sites of sol–gel synthesized anatase TiO2 nanoparticles. Materials Research Bulletin, 2010, 45, 1470-1475.	5.2	24
66	Characterization of ammonium tungsten bronze [(NH4)0.33WO3] in the thermal decomposition course of ammonium paratungstate. Journal of Analytical and Applied Pyrolysis, 2000, 56, 23-31.	5.5	23
67	Particle characteristics and reduction behavior of synthetic magnetite. Journal of Magnetism and Magnetic Materials, 2014, 355, 246-253.	2.3	21
68	Thermal decomposition and creation of reactive solid surfaces. Thermochimica Acta, 1985, 95, 73-85.	2.7	20
69	Thermal genesis course of iron oxide pigmentary powders from steel-pickling chemical waste. Powder Technology, 1990, 63, 87-96.	4.2	20
70	Chromia on Silica and Alumina Catalysts: Chromia Dispersion as Determined by N2-Adsorption Measurements. Zeitschrift Fur Physikalische Chemie, 1991, 173, 201-215.	2.8	20
71	Water sorption in relation to surface defect structure of calcined chromia gel. Journal of Colloid and Interface Science, 1982, 88, 502-511.	9.4	18
72	Surface contribution to the interfacial chemistry of potassium modified oxide catalysts Silica-alumina ersus silica and alumina. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 1149-1156.	1.7	18

#	Article	IF	CITATIONS
73	Spectro-thermal investigation of the decomposition intermediates developed throughout reduction of ammonium paratungstate. Thermochimica Acta, 2000, 343, 139-143.	2.7	18
74	Heterogeneous and/or homogeneous chromia-catalysed decomposition of hydrogen peroxide. Surface Technology, 1981, 12, 317-326.	0.4	17
75	The catalytic decomposition of 2-propanol on calcined chromia: the nature of the active sites. Applied Catalysis, 1982, 4, 189-200.	0.8	17
76	Structural and physicochemical changes occurring during the thermal genesis of cerium(iv) oxide catalyst from diammonium hexanitratocerate(iv) precursor. Reactivity of Solids, 1986, 2, 107-123.	0.3	17
77	Chemical and Morphological Consequences of Acidification of Pure, Phosphated, and Phosphonated CaO: Influence of CO ₂ Adsorption. Langmuir, 2008, 24, 6745-6753.	3.5	17
78	Acid properties of silica and alumina surfaces as probed by thermogravimetry and differential scanning calorimetry of temperature-programmed desorption of pyridine. Thermochimica Acta, 1992, 202, 269-280.	2.7	16
79	Structure–acidity correlation of supported tungsten(VI)-oxo-species: FT-IR and TPD studies of adsorbed pyridine and catalytic decomposition of 2-propanol. Applied Surface Science, 2014, 308, 380-387.	6.1	16
80	Characterization of the powder mixture of the reaction between alumina and barium carbonate. Journal of Materials Science Letters, 1985, 4, 517-522.	0.5	15
81	Acid-leaching and consequent pore structure and bleaching capacity modifications of egyptian clays. Colloids and Surfaces, 1986, 17, 241-249.	0.9	15
82	Support and additive effects on the state of rhodium catalysts. Journal of Molecular Catalysis, 1989, 55, 55-69.	1.2	15
83	Non-isothermal kinetic and thermodynamic parameters of ammonium paratungstate decomposition—a thermoanalytic study. Thermochimica Acta, 1989, 138, 309-317.	2.7	15
84	Fourier-transform laser Raman spectroscopy of adsorbed pyridine and nature of acid sites on calcined phosphate/Zr(OH)4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 139, 81-89.	4.7	15
85	FTIR and electron microscopy observed consequences of HCl and CO2 interfacial interactions with synthetic and biological apatites: Influence of hydroxyapatite maturity. Materials Chemistry and Physics, 2019, 221, 332-341.	4.0	15
86	Combined TPR, XRD, and FTIR studies on the reduction behavior of Co3O4. Materials Chemistry and Physics, 2022, 289, 126367.	4.0	14
87	Effect of annealing on the texture of the ZnO-Cr2O3 system. Surface Technology, 1980, 11, 215-227.	0.4	13
88	Thermal decomposition and creation of reactive solid surfaces. Thermochimica Acta, 1989, 150, 153-165.	2.7	13
89	Protection of rhodium/alumina catalysts by potassium functionalization of the alumina support. The Journal of Physical Chemistry, 1991, 95, 4028-4033.	2.9	13
90	Title is missing!. Journal of Materials Science Letters, 1997, 17, 27-29.	0.5	13

#	Article	IF	CITATIONS
91	XPS and in situ IR spectroscopic studies of CO/Rh/Al2O3 and CO/Rh/K–Al2O3 at high temperatures: probing the impact of the potassium functionalization of the support. Physical Chemistry Chemical Physics, 2003, 5, 1708-1715.	2.8	13
92	A surface study of zirconia-based solid acids by Laser Raman spectroscopy of adsorbed pyridine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 119, 39-50.	4.7	12
93	Structural and Morphological Consequences of High-Temperature Treatments of Hydroxyapatite in the Absence or Presence of HCl Vapor. Langmuir, 2006, 22, 749-755.	3.5	12
94	Chromia on silica and alumina catalysts: surface structural consequences of interfacial events in the impregnation course of aquated chromium(III) ions. Langmuir, 1992, 8, 727-732.	3.5	11
95	Particle characteristics of thermally recovered iron oxide pigments from steel-pickling chemical waste: Effects of heating variables. Powder Technology, 1992, 70, 183-188.	4.2	11
96	Citrate-mediated sol–gel synthesis of Al-substituted sulfated zirconia catalysts for α-pinene isomerization. Molecular Catalysis, 2018, 458, 206-212.	2.0	11
97	The activity of nickel chromite catalyst. Powder Technology, 1981, 30, 105-110.	4.2	10
98	Thermal decomposition and creation of reactive solid surfaces. I. Characterization of the decomposition products of alkaline earth oxalates. Thermochimica Acta, 1984, 78, 29-38.	2.7	10
99	Surface texture, morphology and chemical composition of hydrothermally synthesized tunnel-structured manganese(IV) oxide. Solid State Sciences, 2001, 3, 427-435.	0.7	10
100	Thermoanalytic resolution of hydrogen-influenced reductive events in the decomposition course of ammonium paratungstate. Thermochimica Acta, 1994, 239, 137-145.	2.7	9
101	TiO2 nanoparticle size dependence of porosity, adsorption and catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385, 195-200.	4.7	9
102	Synthesis of MgO nanocatalyst in water-in-oil microemulsion for CO oxidation. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 1213-1229.	1.7	9
103	Thermal and spectroscopic studies of feasibility of rhodium acetate versus chloride as a likely precursor for Rh° metal catalysts. Journal of Analytical and Applied Pyrolysis, 2000, 53, 185-193.	5.5	8
104	Low-temperature adsorption of oxygen on calcined chromia: IR spectroscopic and sorptiometric evidence for oxygen-assisted topochemical reduction of surface chromate species. Applied Catalysis A: General, 2004, 265, 229-235.	4.3	8
105	Surface and related bulk properties of titania nanoparticles recovered from aramid–titania hybrid films: A novel attempt. Materials Research Bulletin, 2012, 47, 3308-3316.	5.2	8
106	Effect of the incorporation of foreign ions on the activity of chromia catalysts. Surface Technology, 1981, 14, 289-294.	0.4	7
107	Study of the influence of the impregnation acidity on the structure and properties of molybdena–silica catalysts. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 2835.	1.0	7
108	Permanganic acid: A novel precursor for the preparation of managanese oxide catalysts. Studies in Surface Science and Catalysis, 1995, 91, 699-706.	1.5	7

#	Article	IF	CITATIONS
109	Low-Temperature IR Spectroscopy of CO Adsorption on Calcined Supported CeO ₂ : Probing Adsorbed Species and Adsorbing Sites. Adsorption Science and Technology, 1997, 15, 377-389.	3.2	7
110	Thermal decomposition course of Eu(CH3COO)3·4H2O and the reactivity at the gas/solid interface thus established. Journal of Analytical and Applied Pyrolysis, 2011, 92, 137-142.	5.5	7
111	In situ FTIR spectroscopic assessment of methylbutynol catalytic conversion products in relation to the surface acid–base properties of systematically modified aluminas. Surface Science, 2016, 652, 269-277.	1.9	7
112	Texture assessment of ceria by analysis of nitrogen sorption isotherms and high-resolution electron microscopy. Journal of Colloid and Interface Science, 1988, 126, 450-462.	9.4	6
113	Chromia on Silica and Alumina Catalysts: CO Oxidation Activity. Zeitschrift Fur Physikalische Chemie, 1998, 203, 131-142.	2.8	6
114	Hydrothermal synthesis attempts of dawsonite-type hydroxymetalocarbonate precursor compounds for catalytic Ho, Sm, and La oxides. Materials Research Bulletin, 2008, 43, 16-29.	5.2	6
115	Theoretical Study of the Adsorption of 2-Propanol onto Silica Surfaces on the Basis of <i>Ab Initio</i> and Density Functional Calculations. Adsorption Science and Technology, 2009, 27, 215-253.	3.2	6
116	Kinetics of formation of barium tungstate in equimolar powder mixture of BaCO3 and WO3. Journal of Thermal Analysis and Calorimetry, 2010, 100, 43-49.	3.6	6
117	Spectro-thermal characterization of the nature of sulfate groups immobilized on tetragonal zirconium oxide: Consequences of doping the oxide with Al or Mg cations. Thermochimica Acta, 2019, 674, 1-9.	2.7	6
118	The effect of surface non-stoichiometry on the texture of the NiO-Cr2O3 system. Surface Technology, 1982, 17, 175-184.	0.4	5
119	Effect of the incorporation of foreign ions on structural characteristics of calcined chromia gel. Colloids and Surfaces, 1983, 6, 135-142.	0.9	5
120	Effect of calcination and/or incorporation of trivalent metal ions on the physicochemical properties of nickel oxide catalyst. Surface Technology, 1985, 25, 287-296.	0.4	5
121	Low-temperature synthesis of magnesium chromite spinel via suspension of Mg5(CO3)4(OH)2�4H2O in aqueous Cr(III) solution. Journal of Materials Science Letters, 1994, 13, 505-507.	0.5	5
122	Texture and morphology of titania particles prepared by vapor-phase pyrolysis of titanium tetra-isopropoxide. Journal of Analytical and Applied Pyrolysis, 1997, 42, 123-133.	5.5	5
123	Surface and Bulk Properties of Alumina Recovered Under Various Conditions from Aluminum Dross Tailings Chemical Waste Versus Bauxite Ore. Journal of Materials Research, 2002, 17, 1721-1728.	2.6	5
124	Kinetic and characterization studies of the formation of barium monomolybdate in equimolar powder mixture of BaCO3 and MoO3. Journal of Materials Research, 2003, 18, 2339-2349.	2.6	5
125	Characterization studies of physicochemical modifications conceded by equimolar-mixed chromia and barium carbonate powders as a function of temperature. Thermochimica Acta, 2009, 483, 8-14.	2.7	5
126	A thermogravimetric study of the solid-state reaction between alumina and strontium carbonate. Journal of Thermal Analysis, 1985, 30, 129-134.	0.6	4

#	Article	IF	CITATIONS
127	Potassium-modified osmium/alumina catalysts. Journal of Molecular Catalysis, 1988, 44, 295-311.	1.2	4
128	A thermogravimetric study of the kinetics of the solid state reaction between alumina and barium carbonate. Thermochimica Acta, 1984, 74, 167-173.	2.7	3
129	The standard but misleading nitrogen adsorption isotherm and texture assessment of porous silicas and aluminas. Surface Technology, 1985, 26, 253-259.	0.4	3
130	Structure-reduction correlation of supported tungsten(VI)-oxo-species. Applied Surface Science, 2013, 282, 898-907.	6.1	3
131	High-temperature stable transition aluminas nanoparticles recovered from sol–gel processed chitosan-AlOx organic–inorganic hybrid films. Journal of Sol-Gel Science and Technology, 2018, 86, 410-422.	2.4	3
132	Low-temperature synthesis of high-purity BiFeO3 via carbonized metal citrate xerogel. Journal of Alloys and Compounds, 2020, 843, 155928.	5.5	3
133	Surface Texture of Microcrystalline Tunnel-Structured Manganese(IV) Oxides: Nitrogen Sorptiometry and Electron Microscopy Studies. Adsorption Science and Technology, 2002, 20, 619-632.	3.2	2
134	Assessment of textural consequences of compacting calcined chromia gel by nitrogen sorption isotherms. Colloids and Surfaces, 1987, 23, 1-14.	0.9	1
135	Nitrogen Sorptiometric Study of Phosphation and Dispersion of Lanthanum(III) Oxide on Alumina Catalysts. Adsorption Science and Technology, 2011, 29, 927-941.	3.2	1
136	Na-Influenced Bulk and Surface Properties of the So-Called Iota(\hat{I}^1)-Alumina: Spectroscopy and Microscopy Studies. Frontiers in Chemistry, 2021, 9, 633877.	3.6	1
137	Water-vapour uptake and electrical conduction in chromia. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 2721.	1.0	0
138	Impacts of CuO x additive on the CO oxidation activity and related surface and bulk properties of a NANO-CeO2 Catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 345.	1.7	0