
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2440717/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Non-parametric multiple inputs prediction model for magnetic field dependent complex modulus of magnetorheological elastomer. Scientific Reports, 2022, 12, 2657.	1.6	4
2	Temperature Dependent on Mechanical and Rheological Properties of EPDM-Based Magnetorheological Elastomers Using Silica Nanoparticles. Materials, 2022, 15, 2556.	1.3	6
3	Field-Dependent Rheological Properties of Magnetorheological Elastomer with Fountain-Like Particle Chain Alignment. Micromachines, 2022, 13, 492.	1.4	6
4	Semi-Active Controllable Stiffness Engine Mount Utilizing Natural Rubber-Based Magnetorheological Elastomers. Frontiers in Materials, 2022, 9, .	1.2	2
5	A mini review on modeling magnetostriction behavior of magnetorheological solid materials. , 2022, ,		0
6	Force and stiffness behavior of natural rubber based magnetorheological elastomer bushing. International Journal of Applied Electromagnetics and Mechanics, 2022, , 1-19.	0.3	0
7	Accurate and fast estimation for field-dependent nonlinear damping force of meandering valve-based magnetorheological damper using extreme learning machine method. Sensors and Actuators A: Physical, 2021, 318, 112479.	2.0	24
8	Physicochemical characterization and rheological properties of magnetic elastomers containing different shapes of corroded carbonyl iron particles. Scientific Reports, 2021, 11, 868.	1.6	20
9	A Transient Model of a Variable Geometry Turbocharger Turbine Using a Passive Actuator. Arabian Journal for Science and Engineering, 2021, 46, 2565-2577.	1.7	4
10	Sensitivities of Rheological Properties of Magnetoactive Foam for Soft Sensor Technology. Sensors, 2021, 21, 1660.	2.1	8
11	Shear band formation in magnetorheological elastomer under stress relaxation. Smart Materials and Structures, 2021, 30, 045015.	1.8	9
12	Effects of magnetic field and particles content on rheology and resistivity behavior of magnetorheological elastomer with embedded cobalt particles. Smart Materials and Structures, 2021, 30, 055002.	1.8	3
13	Seismic Vulnerability Assessment in Ranau, Sabah, Using Two Different Models. ISPRS International Journal of Geo-Information, 2021, 10, 271.	1.4	6
14	Enhancement of the rheological properties of magnetorheological elastomer via polystyreneâ€grafted carbonyl iron particles. Journal of Applied Polymer Science, 2021, 138, 50860.	1.3	2
15	Microstructural behavior of magnetorheological elastomer undergoing durability evaluation by stress relaxation. Scientific Reports, 2021, 11, 10936.	1.6	11
16	Mechanochemical durability and self-cleaning performance of zinc oxide-epoxy superhydrophobic coating prepared via a facile one-step approach. Ceramics International, 2021, 47, 15825-15833.	2.3	32
17	The Effect of Sr-CoFe2O4 Nanoparticles with Different Particles Sized as Additives in CIP-Based Magnetorheological Fluid. Materials, 2021, 14, 3684.	1.3	7
18	A machine learning approach to estimate magnetorheological suspension composition based on magnetic field dependent-rheological properties. Smart Materials and Structures, 2021, 30, 105013.	1.8	4

#	Article	IF	CITATIONS
19	Loss Factor Behavior of Thermally Aged Magnetorheological Elastomers. Materials, 2021, 14, 4874.	1.3	2
20	A mathematical modelling and experimental study of annular-radial type magnetorheological damper. International Journal of Applied Electromagnetics and Mechanics, 2021, 66, 543-560.	0.3	6
21	The Effect of Microparticles on the Storage Modulus and Durability Behavior of Magnetorheological Elastomer. Micromachines, 2021, 12, 948.	1.4	12
22	An Insight into Amorphous Shear Band in Magnetorheological Solid by Atomic Force Microscope. Materials, 2021, 14, 4384.	1.3	2
23	Mini review: an insight on the fabrication methods of smart magnetic polymer foam. Journal of Magnetism and Magnetic Materials, 2021, 534, 168038.	1.0	4
24	Effects of silica on mechanical and rheological properties of EPDM-based magnetorheological elastomers. Smart Materials and Structures, 2021, 30, 105033.	1.8	10
25	Effect of Mould Orientation on the Field-Dependent Properties of MR Elastomers under Shear Deformation. Polymers, 2021, 13, 3273.	2.0	1
26	Rheological Performance of Magnetorheological Grease with Embedded Graphite Additives. Materials, 2021, 14, 5091.	1.3	13
27	MR Damper Modeling using Gaussian and Generalized Bell of ANFIS Algorithm. Evergreen, 2021, 8, 673-685.	0.3	0
28	Declining Performance of Silicone-Based Magnetorheological Elastomers after Accelerated Weathering. Materials, 2021, 14, 6389.	1.3	4
29	A Systematic Approach to Estimate Non-Linear System Parameters using Particle Swarm Optimization and Bond Graph Methods. , 2021, , .		Ο
30	Effects of Petroleum-Based Oils as Dispersing Aids on Physicochemical Characteristics of Magnetorheological Elastomers. Materials, 2021, 14, 7026.	1.3	1
31	Dual Properties of Polyvinyl Alcohol-Based Magnetorheological Plastomer with Different Ratio of DMSO/Water. Sensors, 2021, 21, 7758.	2.1	Ο
32	The Effect of Graphite Additives on Magnetization, Resistivity and Electrical Conductivity of Magnetorheological Plastomer. Materials, 2021, 14, 7484.	1.3	2
33	Enhancement of sensitivity of magnetostrictive foam in low magnetic fields for sensor applications. Polymer, 2020, 211, 123083.	1.8	10
34	Vehicle collision avoidance motion planning strategy using artificial potential field with adaptive multiâ€speed scheduler. IET Intelligent Transport Systems, 2020, 14, 1200-1209.	1.7	15
35	Thermal Aging Rheological Behavior of Magnetorheological Elastomers Based on Silicone Rubber. International Journal of Molecular Sciences, 2020, 21, 9007.	1.8	8
36	An Overview of Durability Evaluations of Elastomer-Based Magnetorheological Materials. IEEE Access, 2020, 8, 134536-134552.	2.6	9

#	Article	IF	CITATIONS
37	Improving Passive Ankle Foot Orthosis System Using Estimated Ankle Velocity Reference. IEEE Access, 2020, 8, 194780-194794.	2.6	4
38	Systematic Review on the Effects, Roles and Methods of Magnetic Particle Coatings in Magnetorheological Materials. Materials, 2020, 13, 5317.	1.3	8
39	Magnetic and Tunable Sound Absorption Properties of an In-Situ Prepared Magnetorheological Foam. Materials, 2020, 13, 5637.	1.3	11
40	Incorporation of cobalt ferrite on the field dependent performances of magnetorheological grease. Journal of Materials Research and Technology, 2020, 9, 15566-15574.	2.6	14
41	The Rheological Studies on Poly(vinyl) Alcohol-Based Hydrogel Magnetorheological Plastomer. Polymers, 2020, 12, 2332.	2.0	10
42	Effects of corrosion rate of the magnetic particles on the field-dependent material characteristics of silicone based magnetorheological elastomers. Smart Materials and Structures, 2020, 29, 087003.	1.8	5
43	Constitutive models for predicting field-dependent viscoelastic behavior of magnetorheological elastomer using machine learning. Smart Materials and Structures, 2020, 29, 087001.	1.8	11
44	Solvent Dependence of the Rheological Properties in Hydrogel Magnetorheological Plastomer. International Journal of Molecular Sciences, 2020, 21, 1793.	1.8	10
45	A Concentric Design of a Bypass Magnetorheological Fluid Damper with a Serpentine Flux Valve. Actuators, 2020, 9, 16.	1.2	30
46	Rheological and Resistance Properties of Magnetorheological Elastomer with Cobalt for Sensor Application. Applied Sciences (Switzerland), 2020, 10, 1638.	1.3	17
47	Tunable low range Gr induced magnetorheological elastomer with magnetically conductive feedback. Smart Materials and Structures, 2020, 29, 057001.	1.8	7
48	Intrinsic Apparent Viscosity and Rheological Properties of Magnetorheological Grease with Dilution Oils. Lecture Notes in Mechanical Engineering, 2020, , 171-180.	0.3	2
49	Relationship between the response of microscopic and magnetic properties with highly uniform dispersion of carbonyl iron particles in magnetorheological polyurethane foam. Smart Materials and Structures, 2020, 29, 115012.	1.8	5
50	The effect of MnxCo(1-x)Fe2O4 with x = 0, 0.25 and 0.5 as nanoparticles additives in magnethorheological fluid. Smart Materials and Structures, 2020, 29, 114004.	1.8	4
51	Preliminary experimental evaluation of a novel loudspeaker featuring magnetorheological fluid surround absorber. Indonesian Journal of Electrical Engineering and Computer Science, 2020, 17, 922.	0.7	5
52	Uniform Dispersion of Carbonyl Iron Particles in Bulk Magnetorheological Flexible Foam. Lecture Notes in Mechanical Engineering, 2020, , 257-264.	0.3	1
53	Frequency-Dependent on the Magnetorheological Effect of Magnetorheological Plastomer. Lecture Notes in Mechanical Engineering, 2020, , 293-300.	0.3	0
54	Rheological Behavior of Graphite Induced Anisotropic Magnetorheological Elastomer. Lecture Notes in Mechanical Engineering, 2020, , 163-170.	0.3	1

#	Article	IF	CITATIONS
55	Enhancement of Isotropic Magnetorheological Elastomer Properties by Silicone Oil. Lecture Notes in Mechanical Engineering, 2020, , 285-292.	0.3	1
56	Effect of Barium on the Structure and Characteristics of Mg2Si Reinforced Particles Al–Mg2Si–Cu in Situ Composite. Lecture Notes in Mechanical Engineering, 2020, , 265-274.	0.3	0
57	Mini Review on Effect of Coatings on the Performance of Magnetorheological Materials. Lecture Notes in Mechanical Engineering, 2020, , 191-199.	0.3	0
58	Rheological Properties of Mg Substituted Cobalt Nickel Ferrite Nanoparticles as an Additive in Magnetorheological Elastomer. Lecture Notes in Mechanical Engineering, 2020, , 153-162.	0.3	0
59	Rheological Properties of Magnetorheological Elastomer Using Cobalt Powder as Filler. Lecture Notes in Mechanical Engineering, 2020, , 119-127.	0.3	0
60	Effect of High Sintering Temperature on the Cobalt Ferrite Synthesized Via Co-precipitation Method. Lecture Notes in Mechanical Engineering, 2020, , 233-242.	0.3	0
61	Analysis of EMG Signals during Stance and Swing Phases for Controlling Magnetorheological Brake applications. Open Engineering, 2020, 11, 112-119.	0.7	2
62	Material Characterization of Magnetorheological Elastomers with Corroded Carbonyl Iron Particles: Morphological Images and Field-dependent Viscoelastic Properties. International Journal of Molecular Sciences, 2019, 20, 3311.	1.8	11
63	Characterization of morphological and rheological properties of rigid magnetorheological foams via in situ fabrication method. Journal of Materials Science, 2019, 54, 13821-13833.	1.7	17
64	Enhancement of Particle Alignment Using Silicone Oil Plasticizer and Its Effects on the Field-Dependent Properties of Magnetorheological Elastomers. International Journal of Molecular Sciences, 2019, 20, 4085.	1.8	30
65	Material Characterizations of Gr-Based Magnetorheological Elastomer for Possible Sensor Applications: Rheological and Resistivity Properties. Materials, 2019, 12, 391.	1.3	48
66	A Review on the Control of the Mechanical Properties of Ankle Foot Orthosis for Gait Assistance. Actuators, 2019, 8, 10.	1.2	24
67	Performance investigation of the crossflow water turbine by using CFD. AIP Conference Proceedings, 2019, , .	0.3	2
68	Prediction of field-dependent rheological properties of magnetorheological grease using extreme learning machine method. Journal of Intelligent Material Systems and Structures, 2019, 30, 1727-1742.	1.4	24
69	Study of the wind farm arrangements and wake characteristic using numerical simulation for crossflow wind turbine. AIP Conference Proceedings, 2019, , .	0.3	1
70	A Conceptual Framework to determine Medical Equipment Maintenance in Hospital Using RCM Method. MATEC Web of Conferences, 2019, 266, 02011.	0.1	7
71	Swelling, Thermal, and Shear Properties of a Waste Tire Rubber Based Magnetorheological Elastomer. Frontiers in Materials, 2019, 6, .	1.2	13
72	The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases. International Journal of Molecular Sciences, 2019, 20, 1525.	1.8	20

#	Article	IF	CITATIONS
73	Thermal Stability and Rheological Properties of Epoxidized Natural Rubber-Based Magnetorheological Elastomer. International Journal of Molecular Sciences, 2019, 20, 746.	1.8	26
74	The field-dependent viscoelastic and transient responses of plate-like carbonyl iron particle based magnetorheological greases. Journal of Intelligent Material Systems and Structures, 2019, 30, 788-797.	1.4	22
75	The field-dependent rheological properties of plate-like carbonyl iron particle-based magnetorheological elastomers. Results in Physics, 2019, 12, 2146-2154.	2.0	30
76	Multi-objective Optimization of Vehicle Speed Control using Gravitational Search Algorithm for Electro-Mechanical Continuously Variable Transmission. IOP Conference Series: Materials Science and Engineering, 2019, 530, 012031.	0.3	1
77	Enhancement of Viscoelastic and Electrical Properties of Magnetorheological Elastomers with Nanosized Ni-Mg Cobalt-Ferrites as Fillers. Materials, 2019, 12, 3531.	1.3	15
78	Control Reference Parameter for Stance Assistance Using a Passive Controlled Ankle Foot Orthosis—A Preliminary Study. Applied Sciences (Switzerland), 2019, 9, 4416.	1.3	10
79	Role of Additives in Enhancing the Rheological Properties of Magnetorheological Solids: A Review. Advanced Engineering Materials, 2019, 21, 1800696.	1.6	32
80	A new platform for the prediction of field-dependent yield stress and plastic viscosity of magnetorheological fluids using particle swarm optimization. Applied Soft Computing Journal, 2019, 76, 615-628.	4.1	20
81	An Innovative Design of Magnetorheological Lateral Damper for Secondary Suspension of a Train. International Journal of Sustainable Transportation Technology, 2019, 2, 47-53.	0.1	1
82	Preliminary Study on Decision Making Factors to Replace Medical Equipment in Hospital. Journal of Social Transformation and Regional Development, 2019, 1, .	0.2	0
83	Implementation of functionalized multiwall carbon nanotubes on magnetorheological elastomer. Journal of Materials Science, 2018, 53, 10122-10134.	1.7	32
84	Simulation Studies of a New Magnetorheological Brake with Difference Gap Size Using Combination of Shear and Squeeze Mode. Advanced Structured Materials, 2018, , 413-424.	0.3	1
85	Performance prediction of magnetorheological valves under various type of fluid and flux path. MATEC Web of Conferences, 2018, 159, 02016.	0.1	Ο
86	Constitutive models of magnetorheological fluids having temperature-dependent prediction parameter. Smart Materials and Structures, 2018, 27, 095001.	1.8	46
87	Simulation and experimental investigation of vehicle braking system employing a fixed caliper based electronic wedge brake. Simulation, 2018, 94, 327-340.	1.1	11
88	Material Characterization of a Magnetorheological Fluid Subjected to Long-Term Operation in Damper. Materials, 2018, 11, 2195.	1.3	40
89	New Variable Stiffness Damper with Magnetorheological-Based Accumulator Control. Key Engineering Materials, 2018, 775, 204-209.	0.4	3
90	A new constitutive model of a magneto-rheological fluid actuator using an extreme learning machine method. Sensors and Actuators A: Physical, 2018, 281, 209-221.	2.0	31

#	Article	IF	CITATIONS
91	A comparative assessment of different dispersing aids in enhancing magnetorheological elastomer properties. Smart Materials and Structures, 2018, 27, 117002.	1.8	16
92	Improvement of magnetorheological greases with superparamagnetic nanoparticles. MATEC Web of Conferences, 2018, 159, 02066.	0.1	6
93	Performance of magnetorheological elastomer based green epoxidized natural rubber/sucrose acetate isobutyrate hybrid matrix. IOP Conference Series: Materials Science and Engineering, 2018, 342, 012034.	0.3	1
94	A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease. PLoS ONE, 2018, 13, e0191795.	1.1	28
95	Performance of Magnetorheological Elastomer Based Silicone/SAIB. Key Engineering Materials, 2018, 772, 61-65.	0.4	1
96	A Model of Magnetorheological Grease using Machine Learning Method. Key Engineering Materials, 2018, 775, 191-197.	0.4	6
97	Effect of Curing Current on Stiffness and Damping Properties of Magnetorheological Elastomers. International Journal of Sustainable Transportation Technology, 2018, 1, 51-58.	0.1	3
98	A new control-oriented transient model of variable geometry turbocharger. Energy, 2017, 125, 297-312.	4.5	20
99	Rheological properties of carbon nanotubes-reinforced magnetorheological elastomer. Journal of Physics: Conference Series, 2017, 795, 012074.	0.3	3
100	Performance prediction of serpentine type compact magnetorheological brake prototype. AIP Conference Proceedings, 2017, , .	0.3	6
101	An enhancement of mechanical and rheological properties of magnetorheological elastomer with multiwall carbon nanotubes. Journal of Intelligent Material Systems and Structures, 2017, 28, 3127-3138.	1.4	31
102	The field-dependent complex modulus of magnetorheological elastomers consisting of sucrose acetate isobutyrate ester. Journal of Intelligent Material Systems and Structures, 2017, 28, 1993-2004.	1.4	34
103	Characterization and modeling of a new magnetorheological damper with meandering type valve using neuro-fuzzy. Journal of King Saud University - Science, 2017, 29, 468-477.	1.6	30
104	Enhanced magnetorheology of soft magnetic carbonyl iron suspension with binary mixture of Ni-Zn ferrite and Fe3O4 nanoparticle additive. Colloid and Polymer Science, 2017, 295, 1499-1510.	1.0	27
105	Study of extreme learning machine activation functions for magnetorheological fluid modelling in medical devices application. , 2017, , .		12
106	An application of extreme learning machine in a graphical user interface for magnetorheological fluid study. , 2017, , .		2
107	Three-dimensional finite element magnetic simulation of an innovative multi-coiled magnetorheological brake. IOP Conference Series: Materials Science and Engineering, 2017, 257, 012052.	0.3	4
108	Improved Gender Recognition during Stepping Activity for Rehab Application Using the Combinatorial Fusion Approach of EMG and HRV. Applied Sciences (Switzerland), 2017, 7, 348.	1.3	11

SAIFUL AMRI BIN MAZLAN

#	Article	IF	CITATIONS
109	Assessment on Stationarity of EMG Signals with Different Windows Size During Isotonic Contractions. Applied Sciences (Switzerland), 2017, 7, 1050.	1.3	23
110	Modelling and Control of a Fixed Calliper-Based Electronic Wedge Brake. Strojniski Vestnik/Journal of Mechanical Engineering, 2017, 63, 181-190.	0.6	7
111	The Fusion of HRV and EMG Signals for Automatic Gender Recognition during Stepping Exercise. Telkomnika (Telecommunication Computing Electronics and Control), 2017, 15, 756.	0.6	Ο
112	FUZZY LOGIC CONTROL FOR ANKLE FOOT ORTHOSES EQUIPPED WITH MAGNETORHEOLOGICAL BRAKE. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.3	11
113	A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions. Sensors, 2016, 16, 1304.	2.1	266
114	A review on preparation techniques for synthesis of nanocrystalline soft magnetic ferrites and investigation on the effects of microstructure features on magnetic properties. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	100
115	Performance of bidisperse magnetorheological fluids utilizing superparamagnetic maghemite nanoparticles. AIP Conference Proceedings, 2016, , .	0.3	13
116	Effect of sucrose acetate isobutyrate ester on the epoxidised natural rubber based magnetorheological elastomers. Journal of Physics: Conference Series, 2016, 776, 012034.	0.3	2
117	Properties of plate-like carbonyl iron particle for magnetorheological fluid. Journal of Physics: Conference Series, 2016, 776, 012033.	0.3	6
118	Magnetorheological valve based actuator for improvement of passively controlled turbocharger system. AIP Conference Proceedings, 2016, , .	0.3	7
119	Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis. IOP Conference Series: Materials Science and Engineering, 2016, 114, 012149.	0.3	14
120	An overview of nanoparticles utilization in magnetorheological materials. AIP Conference Proceedings, 2016, , .	0.3	7
121	Perfect sound insulation property of reclaimed waste tire rubber. AIP Conference Proceedings, 2016, , .	0.3	6
122	Investigation on magnetic field dependent modulus of epoxidized natural rubber based magnetorheological elastomer. Journal of Physics: Conference Series, 2016, 776, 012024.	0.3	4
123	Steady compression characteristics of laminated MRE isolator. Journal of Physics: Conference Series, 2016, 776, 012036.	0.3	2
124	Influence of additional coupling agent on the mechanical properties of polyester–agave cantala roxb based composites. AIP Conference Proceedings, 2016, , .	0.3	1
125	Effect of carbonyl iron particles composition on the physical characteristics of MR grease. AIP Conference Proceedings, 2016, , .	0.3	5
126	Magnetostatic simulation on a novel design of axially multi-coiled magnetorheological brakes. AIP Conference Proceedings, 2016, , .	0.3	2

#	Article	IF	CITATIONS
127	Influence of piston and magnetic coils on the field-dependent damping performance of a mixed-mode magnetorheological damper. Smart Materials and Structures, 2016, 25, 055010.	1.8	21
128	Modeling, validation and firing-on-the-move control of armored vehicles using active front-wheel steering. Journal of Defense Modeling and Simulation, 2016, 13, 253-267.	1.2	3
129	A comparative study of different concentrations of pure Zn powder effects on synthesis, structure, magnetic and microwave-absorbing properties in mechanically-alloyed Ni–Zn ferrite. Journal of Physics and Chemistry of Solids, 2016, 96-97, 49-59.	1.9	41
130	Fabrication of spherical CoFe ₂ O ₄ nanoparticles via sol–gel and hydrothermal methods and investigation of their magnetorheological characteristics. RSC Advances, 2016, 6, 89510-89522.	1.7	35
131	A comparison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids. Smart Materials and Structures, 2016, 25, 095025.	1.8	39
132	Field Responsive Fluids as Smart Materials. Engineering Materials, 2016, , .	0.3	41
133	Magnetorheological (MR) Fluids. Engineering Materials, 2016, , 13-50.	0.3	2
134	Ferrofluids. Engineering Materials, 2016, , 115-119.	0.3	1
135	Preparation of Magnetic Nanoparticle. Engineering Materials, 2016, , 121-126.	0.3	2
136	A new class of magnetorheological elastomers based on waste tire rubber and the characterization of their properties. Smart Materials and Structures, 2016, 25, 115002.	1.8	22
137	Electrorheological (ER) Fluids. Engineering Materials, 2016, , 95-107.	0.3	1
138	Magnetorheological Fluid Applications. Engineering Materials, 2016, , 67-81.	0.3	9
139	Fabrication and investigation on field-dependent properties of natural rubber based magneto-rheological elastomer isolator. Smart Materials and Structures, 2016, 25, 107002.	1.8	22
140	The Field-Dependent Rheological Properties of Magnetorheological Grease Based on Carbonyl-Iron-Particles. Smart Materials and Structures, 2016, 25, 095043.	1.8	69
141	Design of magnetorheological valve using serpentine flux path method. International Journal of Applied Electromagnetics and Mechanics, 2016, 50, 29-44.	0.3	24
142	Rheological properties of isotropic magnetorheological elastomers featuring an epoxidized natural rubber. Smart Materials and Structures, 2016, 25, 107001.	1.8	34
143	Optimisation of yaw rejection control for armoured vehicle using Taguchi method. International Journal of Heavy Vehicle Systems, 2016, 23, 60.	0.1	3
144	An investigation on the mitigation of end-stop impacts in a magnetorheological damper operated by the mixed mode. Smart Materials and Structures, 2016, 25, 125005.	1.8	11

#	Article	IF	CITATIONS
145	Fabrication and viscoelastic characteristics of waste tire rubber based magnetorheological elastomer. Smart Materials and Structures, 2016, 25, 115026.	1.8	19
146	Insight into the Field Responsive Fluids. Engineering Materials, 2016, , 127-134.	0.3	2
147	Effects of multiwall carbon nanotubes on viscoelastic properties of magnetorheological elastomers. Smart Materials and Structures, 2016, 25, 077001.	1.8	46
148	Magnetic carbonyl iron suspension with Ni-Zn ferrite additive and its magnetorheological properties. Materials Letters, 2016, 181, 196-199.	1.3	45
149	Development of a modular MR valve using meandering flow path structure. Smart Materials and Structures, 2016, 25, 037001.	1.8	39
150	Synthesis, characterization and magnetorheological properties of carbonyl iron suspension with superparamagnetic nanoparticles as an additive. Smart Materials and Structures, 2016, 25, 025025.	1.8	37
151	Testing and parametric modeling of magnetorheological valve with meandering flow path. Nonlinear Dynamics, 2016, 85, 287-302.	2.7	26
152	A Yield Stress Scaling Function for ER Fluids. Engineering Materials, 2016, , 109-113.	0.3	1
153	The Gender Effects of Heart Rate Variability Response during Short-Term Exercise using Stair Stepper from Statistical Analysis. Indonesian Journal of Electrical Engineering and Computer Science, 2016, 2, 359.	0.7	3
154	Physicochemical Properties and Stress-Strain Compression Behaviors of a Waste based Magnetorheological Elastomers. Scientia Iranica, 2016, 23, 1144-1159.	0.3	6
155	Models and Modes in MR Fluids. Engineering Materials, 2016, , 51-65.	0.3	0
156	Fitting Distribution for Electromyography and Electroencephalography Signals Based on Goodness-of-Fit Tests. Procedia Computer Science, 2015, 76, 468-473.	1.2	6
157	Independent-wheel-drive electric vehicle handling and stability assessment via composite nonlinear feedback controller. , 2015, , .		1
158	Simulation and model verification of a vehicle handling dynamics. , 2015, , .		2
159	Simulation study of electromagnetic circuit design in laminated magnetorheological elastomer isolator. IOP Conference Series: Materials Science and Engineering, 2015, 100, 012062.	0.3	2
160	Human gesture recognition using a low cost stereo vision in rehab activities. , 2015, , .		5
161	Longitudinal slip control using Magnetorheological brake via Second Order Sliding Mode Controller. , 2015, , .		2
162	Development of controller for Passive Control Ankle Foot Orthoses (PICAFO) based on Electromyography (EMG) signal and angle. , 2015, , .		3

#	Article	IF	CITATIONS
163	Dynamic Track Management in MHT for Pedestrian Tracking Using Laser Range Finder. Mathematical Problems in Engineering, 2015, 2015, 1-9.	0.6	0
164	Development of Estimation Force Feedback Torque Control Algorithm for Driver Steering Feel in Vehicle Steer by Wire System: Hardware in the Loop. International Journal of Vehicular Technology, 2015, 2015, 1-17.	1.1	20
165	Study on the potential application of electronic wedge brake for vehicle brake system. International Journal of Modelling, Identification and Control, 2015, 23, 306.	0.2	3
166	Biosignals based intelligent control interface for current-induced physiological devices. , 2015, , .		2
167	A review of design and modeling of magnetorheological valve. International Journal of Modern Physics B, 2015, 29, 1530004.	1.0	54
168	Adaptive Fuzzy-PI Control for Active Front Steering System of Armoured Vehicles: Outer Loop Control Design for Firing On The Move System. Strojniski Vestnik/Journal of Mechanical Engineering, 2015, 61, 187-195.	0.6	14
169	Electromyography (EMG) based signal analysis for physiological device application in lower limb rehabilitation. , 2015, , .		17
170	Design and performance analysis of a compact magnetorheological valve with multiple annular and radial gaps. Journal of Intelligent Material Systems and Structures, 2015, 26, 1038-1049.	1.4	55
171	Active front steering for steer-by-wire vehicle via composite nonlinear feedback control. , 2015, , .		6
172	Experiments and modeling of a new magnetorheological cell under combination of flow and shear-flow modes. Journal of Non-Newtonian Fluid Mechanics, 2015, 215, 70-79.	1.0	14
173	Recent Progress on Magnetorheological Solids: Materials, Fabrication, Testing, and Applications. Advanced Engineering Materials, 2015, 17, 563-597.	1.6	302
174	OPTIMAL CONTROL STRATEGY FOR LOW SPEED AND HIGH SPEED FOUR-WHEEL-ACTIVE STEERING VEHICLE. Journal of Mechanical Engineering and Sciences, 2015, 8, 1516-1528.	0.3	20
175	Robust attitude controller for uncertain hexarotor micro aerial vehicles (MAVs). , 2014, , .		1
176	Modeling, attitude estimation, and control of Hexarotor micro aerial vehicle (MAV). , 2014, , .		3
177	Independent Torque Control of an Independent-Wheel-Drive Electric Vehicle. Applied Mechanics and Materials, 2014, 663, 493-497.	0.2	0
178	A Feasibility Study of Magnetorheological Elastomer Base Isolator. Applied Mechanics and Materials, 2014, 660, 763-767.	0.2	10
179	Modeling and Validation of Quarter Vehicle Traction Model. Applied Mechanics and Materials, 2014, 554, 489-493.	0.2	0
180	Wheel Synchronization Control in Steer-by-Wire Using Composite Nonlinear Feedback. Applied Mechanics and Materials, 2014, 575, 762-765.	0.2	3

#	Article	IF	CITATIONS
181	Tracking uncertain moving objects using dynamic track management in Multiple Hypothesis Tracking. , 2014, , .		7
182	Dynamic curvature path tracking control for autonomous vehicle: Experimental results. , 2014, , .		7
183	Model-Based Detection and Tracking of Single Moving Object Using Laser Range Finder. , 2014, , .		10
184	Electrocardiographic (ECG) and Electromyographic (EMG) signals fusion for physiological device in rehab application. , 2014, , .		5
185	A GA-Weighted Adaptive Neuro-Fuzzy Model to Predict the Behaviour of Magnetorheological Damper. Applied Mechanics and Materials, 2014, 663, 203-207.	0.2	3
186	Selection of Materials in Designing Magnetorheological Brake. Applied Mechanics and Materials, 2014, 663, 700-704.	0.2	0
187	The Variable Steering Ratio for Vehicle Steer by Wire System Using Hyperbolic Tangent Method. Applied Mechanics and Materials, 2014, 575, 781-784.	0.2	3
188	Optimized Potential Radius Reference Generator Algorithm for Autonomous Vehicle Controller Development. Applied Mechanics and Materials, 2014, 663, 198-202.	0.2	3
189	Simulation and experimental studies on braking response of inertial load using magnetorheological brake. , 2014, , .		1
190	Design of magnetorheological damper with a combination of shear and squeeze modes. Materials & Design, 2014, 54, 87-95.	5.1	101
191	PID plus LQR attitude control for hexarotor MAV in indoor environments. , 2014, , .		8
192	A high performance magnetorheological valve with a meandering flow path. Smart Materials and Structures, 2014, 23, 065017.	1.8	54
193	Simple robust road lane detection algorithm. , 2014, , .		44
194	Magnetic circuit optimization in designing Magnetorheological damper. Smart Structures and Systems, 2014, 14, 869-881.	1.9	14
195	Simulation study of magnetorheological testing cell design by incorporating all basic operating modes. Smart Structures and Systems, 2014, 14, 901-916.	1.9	0
196	A phenomenological dynamic model of a magnetorheological damper using a neuro-fuzzy system. Smart Materials and Structures, 2013, 22, 125013.	1.8	35
197	A design and modelling review of rotary magnetorheological damper. Materials & Design, 2013, 51, 575-591.	5.1	154
198	A Path Tracking Algorithm Using Future Prediction Control with Spike Detection for an Autonomous Vehicle Robot. International Journal of Advanced Robotic Systems, 2013, 10, 309.	1.3	43

#	Article	IF	CITATIONS
199	The Design of Vehicle Active Front Steering Based on Steer by Wire System. Advanced Science Letters, 2013, 19, 61-65.	0.2	2
200	Investigation of Mechanical Performance of Squeezed Magnetorheological Fluid Using Response Surface Method. Advanced Materials Research, 2012, 445, 542-547.	0.3	0
201	Vehicle Path Tracking Using Future Prediction Steering Control. Procedia Engineering, 2012, 41, 473-479.	1.2	19
202	Modeling and simulation of vehicle steer by wire system. , 2012, , .		22
203	Application of an Active Anti-roll bar system for enhancing vehicle ride and handling. , 2012, , .		15
204	Fluid–Particle Separation of Magnetorheological Fluid in Squeeze Mode. Japanese Journal of Applied Physics, 2012, 51, 067301.	0.8	12
205	Compressive and tensile stresses of magnetorheological fluids in squeeze mode. International Journal of Applied Electromagnetics and Mechanics, 2011, 36, 327-337.	0.3	18
206	An Experimental Investigation of Magnetorheological (MR) Fluids under Quasi-Static Loadings. Key Engineering Materials, 2011, 495, 285-288.	0.4	5
207	Magnetic circuit design for the squeeze mode experiments on magnetorheological fluids. Materials & Design, 2009, 30, 1985-1993.	5.1	46
208	An investigation of the behaviour of magnetorheological fluids in compression mode. Journal of Materials Processing Technology, 2008, 201, 780-785.	3.1	65
209	Implementation of Magnetostrictive Material Terfenol-D in CNG Fuel Injection Actuation. Advanced Materials Research, 2008, 47-50, 630-633.	0.3	5
210	Apparent stress–strain relationships in experimental equipment where magnetorheological fluids operate under compression mode. Journal Physics D: Applied Physics, 2008, 41, 095002.	1.3	22
211	The performance of magnetorheological fluid in squeeze mode. Smart Materials and Structures, 2007, 16, 1678-1682.	1.8	57
212	Magnetorheological Fluids Behaviour in Tension Loading Mode. Advanced Materials Research, 0, 47-50, 242-245.	0.3	6
213	A Simulation Study of Magnetostrictive Material Terfenol-D in Automotive CNG Fuel Injection Actuation. Solid State Phenomena, 0, 154, 41-46.	0.3	3
214	Tensile Stress-Strain Relationships of Magnetorheological Fluids under Various Factors. Solid State Phenomena, 0, 154, 127-132.	0.3	9
215	Magnetic Circuit Simulation for Magnetorheological (MR) Fluids Testing Rig in Squeeze Mode. Advanced Materials Research, 0, 123-125, 991-994.	0.3	10
216	The Strain Energy Tuning of the Shape Memory Alloy on the Post-Buckling of Composite Plates Using Finite Element Method. Advanced Materials Research, 0, 445, 577-582.	0.3	3

#	Article	IF	CITATIONS
217	Parameters Consideration in Designing a Magnetorheological Damper. Key Engineering Materials, 0, 543, 487-490.	0.4	12
218	Full Factorial Design to Study Material Parameters of Magnetorheological Fluid. Key Engineering Materials, 0, 543, 511-514.	0.4	0
219	Antilock Braking System Slip Control Modeling Revisited. Applied Mechanics and Materials, 0, 393, 637-643.	0.2	2
220	Combined CNF with LQR in Improving Ride and Handling for Ground Vehicle. Applied Mechanics and Materials, 0, 575, 749-752.	0.2	2
221	LQG Control Design for Vehicle Active Anti-Roll Bar System. Applied Mechanics and Materials, 0, 663, 146-151.	0.2	4
222	Potential Applications of Magnetorheological Elastomers. Applied Mechanics and Materials, 0, 663, 695-699.	0.2	24
223	Development of PROTON Electric Vehicle Control Unit (eVCU) Using State Machine Deterministic Rule-Based Approach. Applied Mechanics and Materials, 0, 663, 532-538.	0.2	0
224	A New Concept of Multimode Magnetorheological Brake Design. Key Engineering Materials, 0, 605, 271-274.	0.4	3
225	Bypass Rotary Magnetorheological Damper for Automotive Applications. Applied Mechanics and Materials, 0, 663, 685-689.	0.2	12
226	Experimental Investigation of Multiple Coils Magnetorheological Damper under Dynamic Loadings. Applied Mechanics and Materials, 0, 660, 863-867.	0.2	0
227	Influence of Fuzzy-PID Controller on Semi-Active Suspension System Performance Using Magnetorheological Damper Fuzzy Model. Applied Mechanics and Materials, 0, 663, 243-247.	0.2	1
228	Application of Serpentine Flux Path Method into a Magnetorheological Valve by FEMM Simulation. Advanced Materials Research, 0, 1123, 7-11.	0.3	3
229	Performance Simulation on a Magnetorheological Valve Module Using Three Different Commercial Magnetorheological Fluid. Advanced Materials Research, 0, 1123, 35-41.	0.3	1
230	Potential Implementation of Electronic Waste Based Magnetite Powder for Magnetorheological Elastomers. Advanced Materials Research, 0, 1123, 373-377.	0.3	0
231	The Changed of Behaviour of MR Fluid in MR Damper after a Long-Term Operation. Key Engineering Materials, 0, 775, 171-176.	0.4	1
232	Hybrid Magnetorheological Elastomer, the Future of Gait Detection. Key Engineering Materials, 0, 775, 177-183.	0.4	3
233	Magnetorheological Elastomer Silicone-Based Containing Corroded Carbonyl Iron Particles. Key Engineering Materials, 0, 772, 51-55.	0.4	1
234	Simulation and Validation of an Anisotropic Magnetorheological Elastomers Mold with Various Alignment Angles. Key Engineering Materials, 0, 772, 66-70.	0.4	0

#	Article	IF	CITATIONS
235	Effect of Hard Magnetic CoFe ₂ O ₄ Nanoparticles Additives on Improving Rheological Properties and Dispersion Stability of Magnetorheological Fluids. Key Engineering Materials, 0, 855, 89-95.	0.4	2
236	Performance Prediction and Design Selection of Modular Magnetorheological Valve Using Meandering Flow Path Structure. Advances in Science and Technology, 0, , .	0.2	0
237	Prediction for magnetostriction magnetorheological foam using machine learning method. Journal of Applied Polymer Science, 0, , .	1.3	2