
thomas drepper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2440673/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optochemical Control of Bacterial Gene Expression: Novel Photocaged Compounds for Different Promoter Systems. ChemBioChem, 2022, 23, e202100467.	2.6	7
2	Effect of Photocaged Isopropyl βâ€ <scp>d</scp> â€1â€thiogalactopyranoside Solubility on the Light Responsiveness of Laclâ€controlled Expression Systems in Different Bacteria. ChemBioChem, 2021, 22, 539-547.	2.6	9
3	Heterologous Production of \hat{l}^2 -Caryophyllene and Evaluation of Its Activity against Plant Pathogenic Fungi. Microorganisms, 2021, 9, 168.	3.6	15
4	Emerging Solutions for <i>in Vivo</i> Biocatalyst Immobilization: Tailor-Made Catalysts for Industrial Biocatalysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 8919-8945.	6.7	26
5	Protocols for yTREX /Tn5â€based gene cluster expression in Pseudomonas putida. Microbial Biotechnology, 2020, 13, 250-262.	4.2	14
6	The Plant Sesquiterpene Nootkatone Efficiently Reduces Heterodera schachtii Parasitism by Activating Plant Defense. International Journal of Molecular Sciences, 2020, 21, 9627.	4.1	11
7	Genetically Encoded Photosensitizers as Light-Triggered Antimicrobial Agents. International Journal of Molecular Sciences, 2019, 20, 4608.	4.1	24
8	A microfluidic co-cultivation platform to investigate microbial interactions at defined microenvironments. Lab on A Chip, 2019, 19, 98-110.	6.0	79
9	Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes. Scientific Reports, 2019, 9, 7028.	3.3	20
10	Phototrophic purple bacteria as optoacoustic in vivo reporters of macrophage activity. Nature Communications, 2019, 10, 1191.	12.8	22
11	Biosynthesis of cycloartenol by expression of plant and bacterial oxidosqualene cyclases in engineered Rhodobacter capsulatus. Journal of Biotechnology, 2019, 306, 100014.	3.8	7
12	Preparation of Cyclic Prodiginines by Mutasynthesis in Pseudomonas putida KT2440. ChemBioChem, 2018, 19, 1545-1552.	2.6	25
13	An optogenetic toolbox of LOV-based photosensitizers for light-driven killing of bacteria. Scientific Reports, 2018, 8, 15021.	3.3	37
14	Natural biocide cocktails: Combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS ONE, 2018, 13, e0200940.	2.5	41
15	A novel FbFP-based biosensor toolbox for sensitive in vivo determination of intracellular pH. Journal of Biotechnology, 2017, 258, 25-32.	3.8	31
16	Novel Tools for the Functional Expression of Metagenomic DNA. Methods in Molecular Biology, 2017, 1539, 159-196.	0.9	17
17	The photosynthetic bacteria Rhodobacter capsulatus and Synechocystis sp. PCC 6803 as new hosts for cyclic plant triterpene biosynthesis. PLoS ONE, 2017, 12, e0189816.	2.5	33
18	Light-Controlled Cell Factories: Employing Photocaged Isopropyl-β- <scp>d</scp> -Thiogalactopyranoside for Light-Mediated Optimization of <i>lac</i> Promoter-Based Gene Expression and (+)-Valencene Biosynthesis in Corynebacterium glutamicum. Applied and Environmental Microbiology, 2016, 82, 6141-6149.	3.1	40

THOMAS DREPPER

#	Article	IF	CITATIONS
19	Photocaged Carbohydrates: Versatile Tools for Controlling Gene Expression by Light. Synthesis, 2016, 49, 42-52.	2.3	5
20	Photocaged Arabinose: A Novel Optogenetic Switch for Rapid and Gradual Control of Microbial Gene Expression. ChemBioChem, 2016, 17, 296-299.	2.6	26
21	Comparative Single-Cell Analysis of Different E. coli Expression Systems during Microfluidic Cultivation. PLoS ONE, 2016, 11, e0160711.	2.5	35
22	Structure and function of a short LOV protein from the marine phototrophic bacterium Dinoroseobacter shibae. BMC Microbiology, 2015, 15, 30.	3.3	36
23	Discovery of the first lightâ€dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Molecular Microbiology, 2014, 93, 1066-1078.	2.5	44
24	The photophysics of LOV-based fluorescent proteins — new tools for cell biology. Photochemical and Photobiological Sciences, 2014, 13, 875-883.	2.9	95
25	Light-responsive control of bacterial gene expression: precise triggering of the <i>lac</i> promoter activity using photocaged IPTC. Integrative Biology (United Kingdom), 2014, 6, 755-765.	1.3	39
26	Advanced in vivo applications of blue light photoreceptors as alternative fluorescent proteins. Photochemical and Photobiological Sciences, 2013, 12, 1125-1134.	2.9	25
27	Heterologous High-Level Gene Expression in the Photosynthetic Bacterium Rhodobacter capsulatus. Methods in Molecular Biology, 2012, 824, 251-269.	0.9	11
28	Lights on and action! Controlling microbial gene expression by light. Applied Microbiology and Biotechnology, 2011, 90, 23-40.	3.6	58
29	Flavin Mononucleotide-Based Fluorescent Reporter Proteins Outperform Green Fluorescent Protein-Like Proteins as Quantitative <i>In Vivo</i> Real-Time Reporters. Applied and Environmental Microbiology, 2010, 76, 5990-5994.	3.1	94