List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/244050/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordination Polymer Framework-Derived Ni-N-Doped Carbon Nanotubes for Electro-Oxidation of Urea. Materials, 2022, 15, 2048.	1.3	2
2	Metal-Organic Framework Reinforced Acrylic Polymer Marine Coatings. Materials, 2022, 15, 27.	1.3	5
3	Environmental Life-Cycle Assessment of Eco-Friendly Alternative Ship Fuels (MGO, LNG, and Hydrogen) for 170 GT Nearshore Ferry. Journal of Marine Science and Engineering, 2022, 10, 755.	1.2	15

Evaluation of in-service speed performance improvement by means of FDR-AF (frictional drag reducing) Tj ETQq0 0 0 rgBT /Overlock 10 $\frac{1}{1.6}$

•		110	U
5	Metal Organic Frameworks Derived Fe-N-C Nanostructures as High-Performance Electrodes for Sodium Ion Batteries and Electromagnetic Interference (EMI) Shielding. Molecules, 2021, 26, 1018.	1.7	9
6	Hydrogen Evolution and Oxygen Reduction Reactions in Acidic Media Catalyzed by Pd ₄ S Decorated N/S Doped Carbon Derived from Pd Coordination Polymer. Small, 2021, 17, e2007511.	5.2	22
7	Performance Improvement of Acid Pretreated 3Dâ€printing Composite for the Heavy Metal Ions Analysis. Electroanalysis, 2021, 33, 1707-1714.	1.5	4
8	Molecular M-N4 macrocycles in a nitrogen-carbon matrix as a highly durable oxygen reduction reaction (ORR) electrocatalysts in acid media. Materials Letters, 2021, 291, 129561.	1.3	10
9	DABCO Derived Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction Reaction (ORR) and Removal of Hexavalent Chromium from Contaminated Water. Materials, 2021, 14, 2871.	1.3	2
10	Permeability of a Zinc-Methacrylate-Based Self-Polishing Copolymer for Use in Antifouling Coating Materials by Molecular Dynamics Simulations. Nanomaterials, 2021, 11, 3141.	1.9	3
11	Taguchi method for optimization of reaction conditions in microwave glycolysis of waste PET. Journal of Material Cycles and Waste Management, 2020, 22, 664-672.	1.6	23
12	Decomposition mechanisms of self-polishing copolymers for antifouling coating materials through first-principles approach. Progress in Organic Coatings, 2020, 138, 105406.	1.9	11
13	Transforming Waste Poly(Ethylene Terephthalate) into Nitrogen Doped Carbon Nanotubes and Its Utility in Oxygen Reduction Reaction and Bisphenol-A Removal from Contaminated Water. Materials, 2020, 13, 4144.	1.3	12
14	Extraction of Microfibrillar Cellulose From Waste Paper by NaOH/Urethane Aqueous System and Its Utility in Removal of Lead from Contaminated Water. Materials, 2020, 13, 2850.	1.3	6
15	Versatile Yolk–Shell Encapsulation: Catalytic, Photothermal, and Sensing Demonstration. Small, 2020, 16, e2002311.	5.2	19
16	Evaluation of Water Hammer for Seawater Treatment System in Offshore Floating Production Unit. Processes, 2020, 8, 1041.	1.3	3
17	Life Cycle Assessment of Alternative Ship Fuels for Coastal Ferry Operating in Republic of Korea. Journal of Marine Science and Engineering, 2020, 8, 660.	1.2	41
18	Metal Organic Framework Derived MnO2-Carbon Nanotubes for Efficient Oxygen Reduction Reaction and Arsenic Removal from Contaminated Water. Nanomaterials, 2020, 10, 1895.	1.9	6

#	Article	IF	CITATIONS
19	Microwave induced transformation of metal organic frameworks into defect rich carbon nanofibers. New Journal of Chemistry, 2020, 44, 5666-5672.	1.4	10
20	Cobalt Nanoparticles on Plasma-Controlled Nitrogen-Doped Carbon as High-Performance ORR Electrocatalyst for Primary Zn-Air Battery. Nanomaterials, 2020, 10, 223.	1.9	16
21	Vitamin Derived Nitrogen Doped Carbon Nanotubes for Efficient Oxygen Reduction Reaction and Arsenic Removal from Contaminated Water. Materials, 2020, 13, 1686.	1.3	6
22	Visible-to-UV triplet-triplet annihilation upconversion from a thermally activated delayed fluorescence/pyrene pair in an air-saturated solution. Korean Journal of Chemical Engineering, 2019, 36, 1791-1798.	1.2	17
23	Manganese nitride stabilized on reduced graphene oxide substrate for high performance sodium ion batteries, super-capacitors and EMI shielding. Journal of Alloys and Compounds, 2019, 808, 151748.	2.8	31
24	Synthesis of Novel Polyacrylates Containing Cyclotetrasiloxane for Fouling-Release Coating Applications. Journal of Nanoscience and Nanotechnology, 2019, 19, 4686-4690.	0.9	0
25	Synthesis and Characterization of Self-Polishing Polyurethane Copolymers. Journal of Nanoscience and Nanotechnology, 2019, 19, 6554-6558.	0.9	2
26	Exploration of Lewis basicity and oxygen reduction reaction activity in plasma-tailored nitrogen-doped carbon electrocatalysts. Catalysis Today, 2019, 337, 102-109.	2.2	39
27	Zeolitic imidazolate frameworks as novel precursors for microwave synthesis of carbon nanotubes. Journal of Alloys and Compounds, 2019, 781, 166-173.	2.8	13
28	Carbon sheathed molybdenum nitride nanoparticles anchored on reduced graphene oxide as high-capacity sodium-ion battery anodes and supercapacitors. New Journal of Chemistry, 2018, 42, 5668-5673.	1.4	34
29	Carbon nanofiber linked FeS2 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries and supercapacitors. Journal of Alloys and Compounds, 2018, 732, 799-805.	2.8	40
30	Carbon encapsulated cobalt sulfide nano-particles anchored on reduced graphene oxide as high capacity anodes for sodium-ion batteries and glucose sensor. Journal of Alloys and Compounds, 2018, 764, 490-497.	2.8	23
31	Experimental evidence and mechanism of the oxygen storage capacity in MnO2-Ce(1â^x)ZrxO2/TiO2 catalyst for low-temperature SCR. Ceramics International, 2017, 43, 5182-5188.	2.3	9
32	Sugar-derived disordered carbon nano-sheets as high-performance electrodes in sodium-ion batteries. New Journal of Chemistry, 2017, 41, 4286-4290.	1.4	12
33	Graphene – carbon nanotube – Mn 3 O 4 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2017, 699, 106-111.	2.8	35
34	Hollow SnO ₂ @carbon core–shell spheres stabilized on reduced graphene oxide for high-performance sodium-ion batteries. New Journal of Chemistry, 2017, 41, 442-446.	1.4	26
35	Nitrogen doped holey carbon nano-sheets as anodes in sodium ion battery. RSC Advances, 2016, 6, 38112-38116.	1.7	25
36	3D graphene–carbon nanotube–nickel ensembles as anodes in sodium-ion batteries. RSC Advances, 2016, 6, 99914-99918.	1.7	6

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Self-Polishing Copolymers Containing a New Zinc Acrylate Monomer. Journal of Nanoscience and Nanotechnology, 2016, 16, 10903-10907.	0.9	6
38	Micellar core-shell-type acrylic-polyurethane hybrid materials with self-polishing property. Composite Interfaces, 2016, 23, 797-805.	1.3	2
39	Catalytic activity of MnOx/TiO2 catalysts synthesized with different manganese precursors for the selective catalytic reduction of nitrogen oxides. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 583-591.	0.8	12
40	Catalytic Activity and Surface Characteristics of WO3-doped MnOx-TiO2 Catalysts for Low-temperature Selective Catalytic Reduction of NOx with NH3. Journal of Korean Institute of Metals and Materials, 2016, 54, 787-792.	0.4	2
41	Time Resolved PIV Investigation on the Skin Friction Reduction Mechanism of Outer-Layer Vertical Blades Array. Advances in Mechanical Engineering, 2015, 7, 901421.	0.8	0
42	Synthesis and properties of UV-curable polyurethane acrylates containing fluorinated acrylic monomer/vinyltrimethoxysilane. Polymer Bulletin, 2015, 72, 1921-1936.	1.7	38
43	Anti-Biofouling Effect of PEG-Grafted Block Copolymer Synthesized by RAFT Polymerization. Journal of Nanoscience and Nanotechnology, 2015, 15, 7866-7870.	0.9	1
44	Amphiphilic Random Copolymers Consisting of Styrene, EGMA, and HEMA for Anti-Biofouling Coatings. Molecular Crystals and Liquid Crystals, 2015, 622, 151-157.	0.4	5
45	Mesoporous silica-giant particle with slit pore arrangement as an adsorbent for heavy metal oxyanions from aqueous medium. RSC Advances, 2015, 5, 10260-10266.	1.7	4
46	Microwave synthesis of nitrogen-doped carbon nanotubes anchored on graphene substrates. Carbon, 2015, 87, 186-192.	5.4	45
47	Adsorption mechanisms of lithium oxides (LixO2) on a graphene-based electrode: A density functional theory approach. Applied Surface Science, 2015, 351, 193-202.	3.1	30
48	Hydroquinone as a single precursor for concurrent reduction and growth of carbon nanotubes on graphene oxide. RSC Advances, 2015, 5, 68270-68275.	1.7	29
49	Antifouling Paint Resin Based on Polyurethane Matrix with Quaternary Ammonium Salt. Porrime, 2015, 39, 122-129.	0.0	0
50	Effects of chain extender in biodegradable polyurethane foams. Journal of Polymer Engineering, 2014, 34, 555-559.	0.6	16
51	Self-polishing behavior of zinc-based copolymer with different monomer composition. Macromolecular Research, 2014, 22, 978-982.	1.0	11
52	Development and performance at high Reynolds number of a skin-friction reducing marine paint using polymer additives. Ocean Engineering, 2014, 84, 183-193.	1.9	27
53	Properties of waterborne polyurethaneâ€fluorinated marine coatings: The effect of different types of diisocyanates and tetrafluorobutanediol chain extender content. Journal of Applied Polymer Science, 2014, 131, .	1.3	16
54	3D functional hetero-nanostructures of vertically anchored metal oxide nanowire arrays on porous graphene substrates. Carbon, 2014, 79, 330-336.	5.4	6

#	Article	IF	CITATIONS
55	Preparation and properties of UVâ€curable fluorinated polyurethane acrylates. Journal of Applied Polymer Science, 2014, 131, .	1.3	28
56	Novel hierarchically dispersed mesoporous silica spheres: effective adsorbents for mercury from wastewater and a thermodynamic study. New Journal of Chemistry, 2014, 38, 3899-3906.	1.4	18
57	Effect of total acrylic/fluorinated acrylic monomer contents on the properties of waterborne polyurethane/acrylic hybrid emulsions. Macromolecular Research, 2013, 21, 709-718.	1.0	42
58	Powder Characteristics and Biocidal Activity of the MnOx–WO3–TiO2 System Synthesized by a Sol–Gel Method for Antifouling Agents. Bulletin of Environmental Contamination and Toxicology, 2013, 91, 208-212.	1.3	2
59	Properties of waterborne polyurethane (WBPU) coatings: Effect of alkyl chain length of tertiary amines of carboxylic acid salt groups. Fibers and Polymers, 2013, 14, 886-894.	1.1	3
60	Blister Packing of Copper Hydroxide and Titania Nanoparticles on Graphene and Its Recycling. ACS Applied Materials & Interfaces, 2013, 5, 12323-12328.	4.0	11
61	Microwave synthesis of three dimensional graphene-based shell-plate hybrid nanostructures. Carbon, 2013, 61, 633-639.	5.4	20
62	Degradation Behavior of TiN Coatings with Different Thicknesses after a Pulsed Laser Thermal Shock Test. Journal of Korean Institute of Metals and Materials, 2013, 51, 729-734.	0.4	2
63	Numerical simulation of wave interacting with a free rolling body. International Journal of Naval Architecture and Ocean Engineering, 2013, 5, 333-347.	1.0	3
64	The Effect of Hydrophilic Components of Zinc Based Copolymer on its Self Polishing Behavior. Applied Mechanics and Materials, 2012, 217-219, 652-655.	0.2	0
65	Properties of Waterborne Polyurethane/CNT Nanocomposite Adhesives: Effect of Countercations. Journal of Adhesion Science and Technology, 2011, 25, 1073-1086.	1.4	1
66	Effect of current step-down on the growth and hardness of PEO coatings on Al6061 alloy. Procedia Engineering, 2011, 10, 2809-2814.	1.2	7
67	Experimental investigation on the drag reducing efficiency of the outer-layer vertical blades. Journal of Marine Science and Technology, 2011, 16, 390-401.	1.3	7
68	Waterborne polysiloxane–urethane–urea for potential marine coatings. Journal of Coatings Technology Research, 2011, 8, 389-399.	1.2	40
69	Preparation and properties of waterborne polyurethane-silane: A promising antifouling coating. Macromolecular Research, 2011, 19, 8-13.	1.0	22
70	THE EFFECT OF CARBON FILLER TYPE ON ACTUATION BEHAVIOR OF CONDUCTING POLYMER ACTUATOR. Functional Materials Letters, 2011, 04, 75-78.	0.7	1
71	The effect of ball milling on the ph of Mg-based metals, oxides and Zn in aqueous media. Metals and Materials International, 2010, 16, 253-258.	1.8	2
72	The pH effect for rare earth metals Nd, Pr and Y in aqueous solution dissolved Mg, Zn and Al. Metals and Materials International, 2010, 16, 833-836.	1.8	0

#	Article	IF	CITATIONS
73	Polyurethane-based Actuators with Various Polyols. Journal of Materials Science and Technology, 2010, 26, 763-768.	5.6	32
74	Direct Analysis of Trace Phenolics with a Microchip:Â In-Channel Sample Preconcentration, Separation, and Electrochemical Detection. Analytical Chemistry, 2006, 78, 6809-6817.	3.2	60
75	Kinetics and mechanisms of the reactions of 9-substituted anthracene cation radicals with water or methanol in acetonitrile. Journal of Electroanalytical Chemistry, 2003, 558, 49-57.	1.9	7
76	Kinetics of the Decay Reactions of the N,N-Dimethyl-p-Toluidine Cation Radical in Acetonitrile. Acidâ^'Base Interaction to Promote the CH2â^'CH2 Bonding. Journal of Physical Chemistry A, 2002, 106, 8103-8108.	1.1	19
77	Remarkable 3-methyl substituent effects on the cyclization reaction of diphenylamine derivative cation radicals in acetonitrileElectronic supplementary information (ESI) available: results of kinetic analysis for the reactions in Figs. 4 and 5. See http://www.rsc.org/suppdata/p2/b2/b201796b/. Perkin Transactions ILRSC 2002 1335-1339	1.1	5
78	Spectroscopic detection of short-lived anthracene derivative cation radicals using an electron transfer stopped-flow method with the tris(2,4-dibromophenyl)amine cation radical. Chemical Communications, 2002, , 604-605.	2.2	19
79	Electrochemical and Electron Transfer Behavior of o-Chloranil with the Presence of Mg2+ in Acetonitrile. Electroanalysis, 2002, 14, 1269-1274.	1.5	5
80	In-Situ ESR Detection of Radical Species of p-Benzoquinone in Aqueous Media. Electroanalysis, 2002, 14, 1501-1507.	1.5	14
81	Reduction of p-benzoquinone in the presence of phospholipid molecules in a lipophilic environment at the thin benzonitrile layer modified electrode. Journal of Electroanalytical Chemistry, 2002, 518, 27-32.	1.9	9
82	Competitive electrochemical deposition of barium salts of chloranil analogous anion radicals. Correlation with reactivity in homogeneous solution. Journal of Electroanalytical Chemistry, 2002, 523, 79-85.	1.9	3
83	Electrochemical and in situ UV–visible spectroscopic behavior of cytochrome c at a cardiolipin-modified electrode. Journal of Electroanalytical Chemistry, 2001, 514, 67-74.	1.9	24
84	Reduction of p-benzoquinone on lipid-modified electrodes: effect of the alkyl chain length of lipids on the electron transfer reactions. Journal of Electroanalytical Chemistry, 2000, 484, 131-136.	1.9	5
85	Redox reaction of benzoquinone on a lipid coated glassy carbon electrode. Journal of Electroanalytical Chemistry, 1997, 438, 113-119.	1.9	25