H-S Philip Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2440368/publications.pdf

Version: 2024-02-01

412 papers

35,760 citations

81 h-index 176 g-index

417 all docs

417 docs citations

times ranked

417

22115 citing authors

#	Article	IF	CITATIONS
1	Metal–Oxide RRAM. Proceedings of the IEEE, 2012, 100, 1951-1970.	16.4	2,225
2	Phase Change Memory. Proceedings of the IEEE, 2010, 98, 2201-2227.	16.4	1,420
3	In-memory computing with resistive switching devices. Nature Electronics, 2018, 1, 333-343.	13.1	1,316
4	MoS ₂ transistors with 1-nanometer gate lengths. Science, 2016, 354, 99-102.	6.0	1,140
5	Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing. Nano Letters, 2012, 12, 2179-2186.	4.5	1,036
6	Synaptic electronics: materials, devices and applications. Nanotechnology, 2013, 24, 382001.	1.3	1,012
7	Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573, 507-518.	13.7	936
8	Carbon nanotube computer. Nature, 2013, 501, 526-530.	13.7	903
9	Optoelectronic resistive random access memory for neuromorphic vision sensors. Nature Nanotechnology, 2019, 14, 776-782.	15.6	783
10	An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation. IEEE Transactions on Electron Devices, 2011, 58, 2729-2737.	1.6	731
11	A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Applicationâé"Part I: Model of the Intrinsic Channel Region. IEEE Transactions on Electron Devices, 2007, 54, 3186-3194.	1.6	715
12	Face classification using electronic synapses. Nature Communications, 2017, 8, 15199.	5.8	683
13	Memory leads the way to better computing. Nature Nanotechnology, 2015, 10, 191-194.	15.6	671
14	A Compact SPICE Model for Carbon-Nanotube Field-Effect Transistors Including Nonidealities and Its Applicationâe"Part II: Full Device Model and Circuit Performance Benchmarking. IEEE Transactions on Electron Devices, 2007, 54, 3195-3205.	1.6	587
15	Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature, 2017, 547, 74-78.	13.7	577
16	The End of Moore's Law: A New Beginning for Information Technology. Computing in Science and Engineering, 2017, 19, 41-50.	1.2	481
17	Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nature Communications, 2018, 9, 5106.	5.8	462
18	Electronic synapses made of layered two-dimensional materials. Nature Electronics, 2018, 1, 458-465.	13.1	459

#	Article	IF	CITATIONS
19	Recommended Methods to Study Resistive Switching Devices. Advanced Electronic Materials, 2019, 5, 1800143.	2.6	452
20	A Low Energy Oxideâ€Based Electronic Synaptic Device for Neuromorphic Visual Systems with Tolerance to Device Variation. Advanced Materials, 2013, 25, 1774-1779.	11.1	445
21	Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nature Communications, 2014, 5, 5028.	5.8	418
22	Wafer-scale single-crystal hexagonal boron nitride monolayers on CuÂ(111). Nature, 2020, 579, 219-223.	13.7	409
23	The end of CMOS scaling. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 2005, 21, 16-26.	0.8	361
24	Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model. Applied Physics Letters, 2011, 99, .	1.5	327
25	HfO _x -Based Vertical Resistive Switching Random Access Memory Suitable for Bit-Cost-Effective Three-Dimensional Cross-Point Architecture. ACS Nano, 2013, 7, 2320-2325.	7.3	309
26	On the Switching Parameter Variation of Metal-Oxide RRAMâ€"Part I: Physical Modeling and Simulation Methodology. IEEE Transactions on Electron Devices, 2012, 59, 1172-1182.	1.6	300
27	Phase-Change Memory—Towards a Storage-Class Memory. IEEE Transactions on Electron Devices, 2017, 64, 4374-4385.	1.6	291
28	Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Device Letters, 1998, 19, 385-387.	2.2	278
29	Extension and source/drain design for high-performance finFET devices. IEEE Transactions on Electron Devices, 2003, 50, 952-958.	1.6	266
30	Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory. Applied Physics Letters, 2011, 98, .	1.5	245
31	Cross-Point Memory Array Without Cell Selectors—Device Characteristics and Data Storage Pattern Dependencies. IEEE Transactions on Electron Devices, 2010, 57, 2531-2538.	1.6	241
32	How 2D semiconductors could extend Moore's law. Nature, 2019, 567, 169-170.	13.7	222
33	A SPICE Compact Model of Metal Oxide Resistive Switching Memory With Variations. IEEE Electron Device Letters, 2012, 33, 1405-1407.	2.2	212
34	Technology and device scaling considerations for CMOS imagers. IEEE Transactions on Electron Devices, 1996, 43, 2131-2142.	1.6	211
35	Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM). IEEE Transactions on Electron Devices, 2011, 58, 1352-1360.	1.6	207
36	On the Switching Parameter Variation of Metal Oxide RRAMâ€"Part II: Model Corroboration and Device Design Strategy. IEEE Transactions on Electron Devices, 2012, 59, 1183-1188.	1.6	196

#	Article	IF	CITATIONS
37	Electrical tuning of phase-change antennas and metasurfaces. Nature Nanotechnology, 2021, 16, 667-672.	15.6	196
38	A 1 GHz Integrated Circuit with Carbon Nanotube Interconnects and Silicon Transistors. Nano Letters, 2008, 8, 706-709.	4.5	185
39	A Phenomenological Model for the Reset Mechanism of Metal Oxide RRAM. IEEE Electron Device Letters, 2010, 31, 1455-1457.	2.2	183
40	Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array. Frontiers in Neuroscience, 2014, 8, 205.	1.4	176
41	Wafer-Scale Growth and Transfer of Aligned Single-Walled Carbon Nanotubes. IEEE Nanotechnology Magazine, 2009, 8, 498-504.	1.1	175
42	Ultra-Low-Energy Three-Dimensional Oxide-Based Electronic Synapses for Implementation of Robust High-Accuracy Neuromorphic Computation Systems. ACS Nano, 2014, 8, 6998-7004.	7.3	172
43	Self-aligned (top and bottom) double-gate MOSFET with a 25 nm thick silicon channel. , 0, , .		166
44	Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation. , 0, , .		165
45	Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal-oxide-semiconductor field-effect-transistor application. Journal of Applied Physics, 2009, 105, .	1.1	165
46	A Compact Model for Metal–Oxide Resistive Random Access Memory With Experiment Verification. IEEE Transactions on Electron Devices, 2016, 63, 1884-1892.	1.6	163
47	Self-Aligned n-Channel Germanium MOSFETs With a Thin Ge Oxynitride Gate Dielectric and Tungsten Gate. IEEE Electron Device Letters, 2004, 25, 135-137.	2.2	161
48	CMOS-Analogous Wafer-Scale Nanotube-on-Insulator Approach for Submicrometer Devices and Integrated Circuits Using Aligned Nanotubes. Nano Letters, 2009, 9, 189-197.	4.5	161
49	Electrical characterization of germanium p-channel MOSFETs. IEEE Electron Device Letters, 2003, 24, 242-244.	2.2	160
50	Energy-Efficient Abundant-Data Computing: The N3XT 1,000x. Computer, 2015, 48, 24-33.	1.2	156
51	Statistical Study on the Schottky Barrier Reduction of Tunneling Contacts to CVD Synthesized MoS ₂ . Nano Letters, 2016, 16, 276-281.	4.5	156
52	Removable and Recyclable Conjugated Polymers for Highly Selective and High-Yield Dispersion and Release of Low-Cost Carbon Nanotubes. Journal of the American Chemical Society, 2016, 138, 802-805.	6.6	152
53	A neuromorphic visual system using RRAM synaptic devices with Sub-pJ energy and tolerance to variability: Experimental characterization and large-scale modeling., 2012,,.		148
54	\$hbox{Al}_{2}hbox{O}_{3}\$-Based RRAM Using Atomic Layer Deposition (ALD) With 1-\$muhbox{A}\$ RESET Current. IEEE Electron Device Letters, 2010, 31, 1449-1451.	2.2	142

#	Article	IF	CITATIONS
55	Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nature Communications, 2019, 10, 2161.	5.8	141
56	On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, monte carlo simulation, and experimental characterization. , 2011 , , .		138
57	Multi-level control of conductive nano-filament evolution in HfO ₂ ReRAM by pulse-train operations. Nanoscale, 2014, 6, 5698-5702.	2.8	137
58	Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed CMOS Electronics. IEEE Transactions on Electron Devices, 2010, 57, 3137-3143.	1.6	127
59	Metal oxide-resistive memory using graphene-edge electrodes. Nature Communications, 2015, 6, 8407.	5.8	127
60	Circuit-Level Performance Benchmarking and Scalability Analysis of Carbon Nanotube Transistor Circuits. IEEE Nanotechnology Magazine, 2009, 8, 37-45.	1.1	125
61	Largeâ€Area Assembly of Densely Aligned Singleâ€Walled Carbon Nanotubes Using Solution Shearing and Their Application to Fieldâ€Effect Transistors. Advanced Materials, 2015, 27, 2656-2662.	11.1	123
62	Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode. Nano Letters, 2013, 13, 651-657.	4.5	121
63	Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier. Nano Letters, 2015, 15, 6809-6814.	4.5	121
64	High-Performance p-Type Black Phosphorus Transistor with Scandium Contact. ACS Nano, 2016, 10, 4672-4677.	7.3	119
65	Variability in Carbon Nanotube Transistors: Improving Device-to-Device Consistency. ACS Nano, 2012, 6, 1109-1115.	7.3	115
66	Crystallization times of Ge–Te phase change materials as a function of composition. Applied Physics Letters, 2009, 95, .	1.5	114
67	Synthesis and size-dependent crystallization of colloidal germanium telluridenanoparticles. Journal of Materials Chemistry, 2010, 20, 1285-1291.	6.7	114
68	Cost-Effective, Transfer-Free, Flexible Resistive Random Access Memory Using Laser-Scribed Reduced Graphene Oxide Patterning Technology. Nano Letters, 2014, 14, 3214-3219.	4.5	114
69	SiGe-on-insulator prepared by wafer bonding and layer transfer for high-performance field-effect transistors. Applied Physics Letters, 2001, 78, 1267-1269.	1.5	112
70	Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films. Applied Physics Letters, 2007, 91, .	1.5	112
71	Flexible Control of Block Copolymer Directed Selfâ€Assembly using Small, Topographical Templates: Potential Lithography Solution for Integrated Circuit Contact Hole Patterning. Advanced Materials, 2012, 24, 3107-3114.	11.1	112
72	Selective Synthesis and Device Applications of Semiconducting Single-Walled Carbon Nanotubes Using Isopropyl Alcohol as Feedstock. ACS Nano, 2012, 6, 7454-7462.	7.3	107

#	Article	IF	Citations
73	Modeling and Analysis of Planar-Gate Electrostatic Capacitance of 1-D FET With Multiple Cylindrical Conducting Channels. IEEE Transactions on Electron Devices, 2007, 54, 2377-2385.	1.6	106
74	HfOx based vertical resistive random access memory for cost-effective 3D cross-point architecture without cell selector. , 2012, , .		106
75	Thermal Boundary Resistance Measurements for Phase-Change Memory Devices. IEEE Electron Device Letters, 2010, 31, 56-58.	2.2	105
76	Monolithic 3D integration of logic and memory: Carbon nanotube FETs, resistive RAM, and silicon FETs. , $2014, $, .		105
77	Device and materials requirements for neuromorphic computing. Journal Physics D: Applied Physics, 2019, 52, 113001.	1.3	105
78	Carbon Nanotube Robust Digital VLSI. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2012, 31, 453-471.	1.9	104
79	Ultrafast Characterization of Phase-Change Material Crystallization Properties in the Melt-Quenched Amorphous Phase. Nano Letters, 2014, 14, 3419-3426.	4.5	102
80	Sensor-to-Digital Interface Built Entirely With Carbon Nanotube FETs. IEEE Journal of Solid-State Circuits, 2014, 49, 190-201.	3.5	101
81	High Current Density and Low Thermal Conductivity of Atomically Thin Semimetallic WTe ₂ . ACS Nano, 2016, 10, 7507-7514.	7.3	100
82	Impact of a Process Variation on Nanowire and Nanotube Device Performance. IEEE Transactions on Electron Devices, 2007, 54, 2369-2376.	1.6	98
83	Hyperdimensional computing with 3D VRRAM in-memory kernels: Device-architecture co-design for energy-efficient, error-resilient language recognition. , 2016, , .		95
84	Design Methods for Misaligned and Mispositioned Carbon-Nanotube Immune Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2008, 27, 1725-1736.	1.9	93
85	Carbon Nanotube Transistor Circuits: Circuit-Level Performance Benchmarking and Design Options for Living with Imperfections. Digest of Technical Papers - IEEE International Solid-State Circuits Conference, 2007, , .	0.0	91
86	Distinctive in-Plane Cleavage Behaviors of Two-Dimensional Layered Materials. ACS Nano, 2016, 10, 8980-8988.	7.3	90
87	Carbon nanomaterials for non-volatile memories. Nature Reviews Materials, 2018, 3, .	23.3	87
88	Understanding Energy Efficiency Benefits of Carbon Nanotube Field-Effect Transistors for Digital VLSI. IEEE Nanotechnology Magazine, 2018, 17, 1259-1269.	1.1	87
89	Layered Semiconducting 2D Materials for Future Transistor Applications. Small Structures, 2021, 2, 2000103.	6.9	85
90	Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study., 2018,,.		84

#	Article	IF	Citations
91	A CMOS-integrated 'ISFET-operational amplifier' chemical sensor employing differential sensing. IEEE Transactions on Electron Devices, 1989, 36, 479-487.	1.6	83
92	Ternary content-addressable memory with MoS2 transistors for massively parallel data search. Nature Electronics, 2019, 2, 108-114.	13.1	83
93	Strained Si CMOS (SS CMOS) technology: opportunities and challenges. Solid-State Electronics, 2003, 47, 1133-1139.	0.8	82
94	VMR: VLSI-compatible metallic carbon nanotube removal for imperfection-immune cascaded multi-stage digital logic circuits using Carbon Nanotube FETs. , 2009, , .		82
95	TDI charge-coupled devices: Design and applications. IBM Journal of Research and Development, 1992, 36, 83-106.	3.2	81
96	Beyond the conventional transistor. Solid-State Electronics, 2005, 49, 755-762.	0.8	81
97	An Ultra-Low Reset Current Cross-Point Phase Change Memory With Carbon Nanotube Electrodes. IEEE Transactions on Electron Devices, 2012, 59, 1155-1163.	1.6	79
98	Real-Time Observation of the Electrode-Size-Dependent Evolution Dynamics of the Conducting Filaments in a SiO ₂ Layer. ACS Nano, 2017, 11, 4097-4104.	7.3	79
99	Resistive random access memory (RRAM) technology: From material, device, selector, 3D integration to bottom-up fabrication. Journal of Electroceramics, 2017, 39, 21-38.	0.8	79
100	Nanoscale Bipolar and Complementary Resistive Switching Memory Based on Amorphous Carbon. IEEE Transactions on Electron Devices, 2011, 58, 3933-3939.	1.6	78
101	Ultralow–switching current density multilevel phase-change memory on a flexible substrate. Science, 2021, 373, 1243-1247.	6.0	78
102	Low-Energy Robust Neuromorphic Computation Using Synaptic Devices. IEEE Transactions on Electron Devices, 2012, 59, 3489-3494.	1.6	76
103	Threshold Voltage and On–Off Ratio Tuning for Multiple-Tube Carbon Nanotube FETs. IEEE Nanotechnology Magazine, 2009, 8, 4-9.	1.1	75
104	Metal/III-V Schottky barrier height tuning for the design of nonalloyed III-V field-effect transistor source/drain contacts. Journal of Applied Physics, 2010, 107, .	1.1	75
105	A Circuit-Compatible SPICE model for Enhancement Mode Carbon Nanotube Field Effect Transistors. , 2006, , .		74
106	Analytical Modeling of the Suspended-Gate FET and Design Insights for Low-Power Logic. IEEE Transactions on Electron Devices, 2008, 55, 48-59.	1.6	71
107	The N3XT Approach to Energy-Efficient Abundant-Data Computing. Proceedings of the IEEE, 2019, 107, 19-48.	16.4	71
108	Discrete random dopant distribution effects in nanometer-scale MOSFETs. Microelectronics Reliability, 1998, 38, 1447-1456.	0.9	70

#	Article	IF	Citations
109	Carbon Nanotube Circuit Integration up to Sub-20 nm Channel Lengths. ACS Nano, 2014, 8, 3434-3443.	7.3	70
110	Phonon and electron transport through Ge2Sb2Te5 films and interfaces bounded by metals. Applied Physics Letters, 2013, 102, .	1.5	68
111	Compact Model for Carbon Nanotube Field-Effect Transistors Including Nonidealities and Calibrated With Experimental Data Down to 9-nm Gate Length. IEEE Transactions on Electron Devices, 2013, 60, 1834-1843.	1.6	64
112	Two gates are better than one [double-gate MOSFET process]. IEEE Circuits and Devices: the Magazine of Electronic and Photonic Systems, 2003, 19, 48-62.	0.8	63
113	VLSI-Compatible Carbon Nanotube Doping Technique with Low Work-Function Metal Oxides. Nano Letters, 2014, 14, 1884-1890.	4.5	63
114	Efficient FPGAs using nanoelectromechanical relays. , 2010, , .		62
115	Hysteresis in Carbon Nanotube Transistors: Measurement and Analysis of Trap Density, Energy Level, and Spatial Distribution. ACS Nano, 2016, 10, 4599-4608.	7.3	62
116	Nanoscale phase change memory materials. Nanoscale, 2012, 4, 4382.	2.8	61
117	Resistive RAM-Centric Computing: Design and Modeling Methodology. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 2263-2273.	3.5	61
118	CMOS active pixel image sensors fabricated using a 1.8-V, 0.25- \hat{l} 4m CMOS technology. IEEE Transactions on Electron Devices, 1998, 45, 889-894.	1.6	60
119	A Monte Carlo study of the low resistance state retention of HfOx based resistive switching memory. Applied Physics Letters, 2012, 100, .	1.5	60
120	Schottky-Barrier Carbon Nanotube Field-Effect Transistor Modeling. IEEE Transactions on Electron Devices, 2007, 54, 439-445.	1.6	59
121	Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials. Physical Review Letters, 2016, 117, 067601.	2.9	59
122	Nanoelectromechanical (NEM) relays integrated with CMOS SRAM for improved stability and low leakage. , 2009, , .		58
123	Resistance and Threshold Switching Voltage Drift Behavior in Phase-Change Memory and Their Temperature Dependence at Microsecond Time Scales Studied Using a Micro-Thermal Stage. IEEE Transactions on Electron Devices, 2011, 58, 584-592.	1.6	58
124	Read/write schemes analysis for novel complementary resistive switches in passive crossbar memory arrays. Nanotechnology, 2010, 21, 465202.	1.3	57
125	The Effect of Donor/Acceptor Nature of Interface Traps on Ge MOSFET Characteristics. IEEE Transactions on Electron Devices, 2011, 58, 1015-1022.	1.6	57
126	Fast Spiking of a Mott VO ₂ –Carbon Nanotube Composite Device. Nano Letters, 2019, 19, 6751-6755.	4.5	56

#	Article	IF	Citations
127	The Role of Ti Capping Layer in HfO _{<italic>x</italic>} -Based RRAM Devices. IEEE Electron Device Letters, 2014, 35, 912-914.	2.2	55
128	Analytical ballistic theory of carbon nanotube transistors: Experimental validation, device physics, parameter extraction, and performance projection. Journal of Applied Physics, 2008, 104, 124514.	1.1	54
129	Device study, chemical doping, and logic circuits based on transferred aligned single-walled carbon nanotubes. Applied Physics Letters, 2008, 93, .	1.5	54
130	Impact of fixed charge on metal-insulator-semiconductor barrier height reduction. Applied Physics Letters, 2011, 99, .	1.5	54
131	In Situ Tuning of Switching Window in a Gateâ€Controlled Bilayer Grapheneâ€Electrode Resistive Memory Device. Advanced Materials, 2015, 27, 7767-7774.	11.1	54
132	Fabrication of Metal Gated FinFETs Through Complete Gate Silicidation With Ni. IEEE Transactions on Electron Devices, 2004, 51, 2115-2120.	1.6	53
133	Optical Absorption Enhancement in Freestanding GaAs Thin Film Nanopyramid Arrays. Advanced Energy Materials, 2012, 2, 1254-1260.	10.2	52
134	Electron and hole mobility enhancement in strained SOI by wafer bonding. IEEE Transactions on Electron Devices, 2002, 49, 1566-1571.	1.6	51
135	Electronic and optical switching of solution-phase deposited SnSe2 phase change memory material. Journal of Applied Physics, 2011, 109, .	1.1	51
136	Nanometer-Scale \${m HfO}_{x}\$ RRAM. IEEE Electron Device Letters, 2013, 34, 1005-1007.	2.2	51
137	Hysteresis-Free Carbon Nanotube Field-Effect Transistors. ACS Nano, 2017, 11, 4785-4791.	7.3	50
138	Integration of nanoelectromechanical (NEM) relays with silicon CMOS with functional CMOS-NEM circuit. , $2011, , .$		49
139	Hyperdimensional Computing Exploiting Carbon Nanotube FETs, Resistive RAM, and Their Monolithic 3D Integration. IEEE Journal of Solid-State Circuits, 2018, 53, 3183-3196.	3.5	49
140	Carbon nanotube correlation., 2010,,.		48
141	<i>In Situ</i> Transmission Electron Microscopy Observation of Nanostructural Changes in Phase-Change Memory. ACS Nano, 2011, 5, 2742-2748.	7.3	48
142	Four-layer 3D vertical RRAM integrated with FinFET as a versatile computing unit for brain-inspired cognitive information processing. , 2016, , .		48
143	Experimental demonstration of high mobility Ge NMOS. , 2009, , .		47
144	Universal Selective Dispersion of Semiconducting Carbon Nanotubes from Commercial Sources Using a Supramolecular Polymer. ACS Nano, 2017, 11, 5660-5669.	7.3	47

#	Article	IF	Citations
145	Frequency Response of Top-Gated Carbon Nanotube Field-Effect Transistors. IEEE Nanotechnology Magazine, 2004, 3, 383-387.	1.1	46
146	Analysis of Temperature in Phase Change Memory Scaling. IEEE Electron Device Letters, 2007, 28, 697-699.	2.2	46
147	Integrated wafer-scale growth and transfer of directional Carbon Nanotubes and misaligned-Carbon-Nanotube-immune logic structures. , 2008, , .		45
148	Resistive RAM With Multiple Bits Per Cell: Array-Level Demonstration of 3 Bits Per Cell. IEEE Transactions on Electron Devices, 2019, 66, 641-646.	1.6	43
149	Parasitic Capacitances: Analytical Models and Impact on Circuit-Level Performance. IEEE Transactions on Electron Devices, 2011, 58, 1361-1370.	1.6	42
150	Low-Temperature Side Contact to Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm Contact Length. Nano Letters, 2019, 19, 1083-1089.	4.5	42
151	Characterization and Design of Logic Circuits in the Presence of Carbon Nanotube Density Variations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2011, 30, 1103-1113.	1.9	41
152	A General Design Strategy for Block Copolymer Directed Self-Assembly Patterning of Integrated Circuits Contact Holes using an Alphabet Approach. Nano Letters, 2015, 15, 805-812.	4.5	41
153	Monolithic Integration of CMOS VLSI and Carbon Nanotubes for Hybrid Nanotechnology Applications. IEEE Nanotechnology Magazine, 2008, 7, 636-639.	1.1	40
154	Effect of annealing ambient and temperature on the electrical characteristics of atomic layer deposition Al2O3/In0.53Ga0.47As metal-oxide-semiconductor capacitors and MOSFETs. Journal of Applied Physics, 2012, 111, .	1.1	40
155	Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts. Nano Letters, 2018, 18, 2822-2827.	4.5	40
156	Digital VLSI logic technology using Carbon Nanotube FETs. , 2009, , .		39
157	An Analytical Derivation of the Density of States, Effective Mass, and Carrier Density for Achiral Carbon Nanotubes. IEEE Transactions on Electron Devices, 2008, 55, 289-297.	1.6	38
158	Ultralow Voltage Crossbar Nonvolatile Memory Based on Energy-Reversible NEM Switches. IEEE Electron Device Letters, 2009, 30, 626-628.	2.2	38
159	Ultrafast terahertz-induced response of GeSbTe phase-change materials. Applied Physics Letters, 2014, 104, .	1.5	38
160	A non-iterative compact model for carbon nanotube FETs incorporating source exhaustion effects. , 2009, , .		37
161	Current Scaling in Aligned Carbon Nanotube Array Transistors With Local Bottom Gating. IEEE Electron Device Letters, 2010, 31, 644-646.	2.2	37
162	High-performance carbon nanotube field-effect transistors. , 2014, , .		37

#	Article	IF	Citations
163	Low temperature (≤ 380°C) and high performance Ge CMOS technology with novel source/drain by metal-induced dopants activation and high-k/metal gate stack for monolithic 3D integration., 2008,,.		36
164	ACCNTâ€"A Metallic-CNT-Tolerant Design Methodology for Carbon-Nanotube VLSI: Concepts and Experimental Demonstration. IEEE Transactions on Electron Devices, 2009, 56, 2969-2978.	1.6	36
165	Metal/III-V effective barrier height tuning using atomic layer deposition of high-κ/high-κ bilayer interfaces. Applied Physics Letters, 2011, 99, 092107.	1.5	36
166	Design and optimization methodology for 3D RRAM arrays. , 2013, , .		36
167	Rapid Co-Optimization of Processing and Circuit Design to Overcome Carbon Nanotube Variations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2015, 34, 1082-1095.	1.9	36
168	Engineering thermal and electrical interface properties of phase change memory with monolayer MoS2. Applied Physics Letters, 2019, 114, .	1.5	36
169	Characterization of the silicon on insulator film in bonded wafers by high resolution x-ray diffraction. Applied Physics Letters, 1999, 75, 787-789.	1.5	35
170	Phase change nanodot arrays fabricated using a self-assembly diblock copolymer approach. Applied Physics Letters, 2007, 91, 013104.	1.5	35
171	Experimental demonstration of array-level learning with phase change synaptic devices. , 2013, , .		35
172	Understanding the switching mechanism of interfacial phase change memory. Journal of Applied Physics, 2019, 125, .	1,1	35
173	Analysis of the Frequency Response of Carbon Nanotube Transistors. IEEE Nanotechnology Magazine, 2006, 5, 599-605.	1.1	34
174	1D Selection Device Using Carbon Nanotube FETs for High-Density Cross-Point Memory Arrays. IEEE Transactions on Electron Devices, 2015, 62, 2197-2204.	1.6	34
175	SAPIENS: A 64-kb RRAM-Based Non-Volatile Associative Memory for One-Shot Learning and Inference at the Edge. IEEE Transactions on Electron Devices, 2021, 68, 6637-6643.	1.6	34
176	A 3D Multi-Aperture Image Sensor Architecture. , 2006, , .		33
177	An Integrated Phase Change Memory Cell With Ge Nanowire Diode For Cross-Point Memory. , 2007, , .		33
178	Biomimetic Approaches for Fabricating High-Density Nanopatterned Arrays. Chemistry of Materials, 2007, 19, 839-843.	3.2	33
179	Combinational Logic Design Using Six-Terminal NEM Relays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013, 32, 653-666.	1.9	32
180	AC conductance measurement and analysis of the conduction processes in HfOx based resistive switching memory. Applied Physics Letters, 2011, 99, .	1.5	31

#	Article	IF	Citations
181	Block copolymer directed self-assembly (DSA) aware contact layer optimization for 10 nm 1D standard cell library. , 2013, , .		31
182	Vertical and Lateral Copper Transport through Graphene Layers. ACS Nano, 2015, 9, 8361-8367.	7.3	31
183	Spatial Separation of Carrier Spin by the Valley Hall Effect in Monolayer WSe ₂ Transistors. Nano Letters, 2019, 19, 770-774.	4.5	31
184	Effect of knife-edge skew on modulation transfer function measurement of charge-coupled device imagers employing a scanning knife edge. Optical Engineering, 1991, 30, 1394.	0.5	30
185	Modeling the switching dynamics of programmable-metallization-cell (PMC) memory and its application as synapse device for a neuromorphic computation system., 2010,,.		30
186	Graphene Interconnect Lifetime: A Reliability Analysis. IEEE Electron Device Letters, 2012, 33, 1604-1606.	2.2	30
187	Selective Device Structure Scaling and Parasitics Engineering: A Way to Extend the Technology Roadmap. IEEE Transactions on Electron Devices, 2009, 56, 312-320.	1.6	29
188	Uniaxial Stress Engineering for High-Performance Ge NMOSFETs. IEEE Transactions on Electron Devices, 2010, 57, 1037-1046.	1.6	29
189	Dual-Layer Dielectric Stack for Thermally Isolated Low-Energy Phase-Change Memory. IEEE Transactions on Electron Devices, 2017, 64, 4496-4502.	1.6	29
190	Investigation of the performance limits of III-V double-gate n-MOSFETs. , 0, , .		28
191	Assembly and Electrical Characterization of Multiwall Carbon Nanotube Interconnects. IEEE Nanotechnology Magazine, 2008, 7, 596-600.	1.1	28
192	Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis. Journal of Applied Physics, 2008, 104, .	1.1	28
193	SRAM, NAND, DRAM contact hole patterning using block copolymer directed self-assembly guided by small topographical templates. , $2011, , .$		28
194	Electrothermal Modeling and Design Strategies for Multibit Phase-Change Memory. IEEE Transactions on Electron Devices, 2012, 59, 3561-3567.	1.6	28
195	Nano-Electro-Mechanical relays for FPGA routing: Experimental demonstration and a design technique. , 2012, , .		28
196	Fabrication and Characterization of Carbon Nanotube Interconnects., 2007,,.		27
197	Carrier density and quantum capacitance for semiconducting carbon nanotubes. Journal of Applied Physics, 2008, 104, .	1.1	27
198	Overcoming carbon nanotube variations through co-optimized technology and circuit design. , 2011, , .		27

#	Article	IF	Citations
199	Transient dynamics of NbOx threshold switches explained by Poole-Frenkel based thermal feedback mechanism. Applied Physics Letters, 2018, 112, .	1.5	27
200	Thermal disturbance and its impact on reliability of phase-change memory studied by the micro-thermal stage. , 2010, , .		26
201	32-bit Processor core at 5-nm technology: Analysis of transistor and interconnect impact on VLSI system performance. , 2016, , .		26
202	Neuromorphic architectures with electronic synapses. , 2016, , .		26
203	Challenges and opportunities toward online training acceleration using RRAM-based hardware neural network., 2017,,.		26
204	Effect of thermal insulation on the electrical characteristics of NbOx threshold switches. Applied Physics Letters, 2018, 112, .	1.5	26
205	First Demonstration of AC Gain From a Single-walled Carbon Nanotube Common-Source Amplifier. , 2006, , .		25
206	A Multi-Aperture Image Sensor With 0.7 μ_{m} Pixels in 0.11 μ_{m} CMOS Technology. IEEE Journal of Solid-State Circuits, 2008, 43, 2990-3005.	3.5	25
207	Efficient metallic carbon nanotube removal for highly-scaled technologies. , 2015, , .		25
208	Localized Triggering of the Insulator-Metal Transition in VO ₂ Using a Single Carbon Nanotube. ACS Nano, 2019, 13, 11070-11077.	7.3	25
209	A Density Metric for Semiconductor Technology [Point of View]. Proceedings of the IEEE, 2020, 108, 478-482.	16.4	25
210	Complex Band Structures: From Parabolic to Elliptic Approximation. IEEE Electron Device Letters, 2011, 32, 1296-1298.	2.2	24
211	One-Dimensional Thickness Scaling Study of Phase Change Material $\theta_{0} = 0.000$ \$\(\text{Mbox} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.6	24
212	Experimental study of plane electrode thickness scaling for 3D vertical resistive random access memory. Nanotechnology, 2013, 24, 465201.	1.3	24
213	Scaling the CBRAM Switching Layer Diameter to 30 nm Improves Cycling Endurance. IEEE Electron Device Letters, 2018, 39, 23-26.	2.2	24
214	<i>In-Situ</i> Grown Graphene Enabled Copper Interconnects With Improved Electromigration Reliability. IEEE Electron Device Letters, 2019, 40, 815-817.	2.2	24
215	Monolithic 3-D Integration. IEEE Micro, 2019, 39, 16-27.	1.8	24
216	RADAR: A Fast and Energy-Efficient Programming Technique for Multiple Bits-Per-Cell RRAM Arrays. IEEE Transactions on Electron Devices, 2021, 68, 4397-4403.	1.6	24

#	Article	IF	CITATIONS
217	Metrics for performance benchmarking of nanoscale Si and carbon nanotube FETs including device nonidealities. IEEE Transactions on Electron Devices, 2006, 53, 1317-1322.	1.6	23
218	An experimental study on transport issues and electrostatics of ultrathin body SOI pMOSFETs. IEEE Electron Device Letters, 2002, 23, 609-611.	2.2	22
219	ACCNT: A Metallic-CNT-Tolerant Design Methodology for Carbon Nanotube VLSI: Analyses and Design Guidelines. IEEE Transactions on Electron Devices, 2010, 57, 2284-2295.	1.6	22
220	Carbon nanotube electronics - Materials, devices, circuits, design, modeling, and performance projection. , 2011, , .		22
221	3-D Cross-Point Array Operation on <inline-formula> <tex-math notation="TeX">\${m AlO}_{y}/{m HfO}_{x}\$ </tex-math></inline-formula> -Based Vertical Resistive Switching Memory. IEEE Transactions on Electron Devices, 2014, 61, 1377-1381.	1.6	22
222	Device and Circuit Interaction Analysis of Stochastic Behaviors in Cross-Point RRAM Arrays. IEEE Transactions on Electron Devices, 2017, 64, 4928-4936.	1.6	22
223	Next-Generation Ultrahigh-Density 3-D Vertical Resistive Switching Memory (VRSM)—Part II: Design Guidelines for Device, Array, and Architecture. IEEE Transactions on Electron Devices, 2019, 66, 5147-5154.	1.6	22
224	Monolithic three-dimensional integration of carbon nanotube FETs with silicon CMOS. , 2014, , .		21
225	Toward Low-Temperature Solid-Source Synthesis of Monolayer MoS ₂ . ACS Applied Materials & Acceptage 18, 13, 41866-41874.	4.0	21
226	Integrating Phase-Change Memory Cell With Ge Nanowire Diode for Crosspoint Memory—Experimental Demonstration and Analysis. IEEE Transactions on Electron Devices, 2008, 55, 2307-2313.	1.6	20
227	A Physics-Based Compact Model of Ill–V FETs for Digital Logic Applications: Current–Voltage and Capacitance–Voltage Characteristics. IEEE Transactions on Electron Devices, 2009, 56, 2917-2924.	1.6	20
228	Measuring Frequency Response of a Single-Walled Carbon Nanotube Common-Source Amplifier. IEEE Nanotechnology Magazine, 2009, 8, 226-233.	1.1	20
229	Noniterative Compact Modeling for Intrinsic Carbon-Nanotube FETs: Quantum Capacitance and Ballistic Transport. IEEE Transactions on Electron Devices, 2011, 58, 2456-2465.	1.6	20
230	Time-Based Sensor Interface Circuits in CMOS and Carbon Nanotube Technologies. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 577-586.	3.5	20
231	Atomic layer deposition of high- <i>k</i> dielectrics on single-walled carbon nanotubes: a Raman study. Nanotechnology, 2013, 24, 245703.	1.3	19
232	Monolithic three-dimensional integration of carbon nanotube FET complementary logic circuits. , 2013, , .		19
233	Transient Enhanced Diffusion and Dose Loss of Indium in Silicon. Materials Research Society Symposia Proceedings, 1999, 568, 205.	0.1	18
234	Band to Band Tunneling Study in High Mobility Materials: III-V, Si, Ge and strained SiGe., 2007,,.		18

#	Article	IF	CITATIONS
235	Metal-induced dopant (boron and phosphorus) activation process in amorphous germanium for monolithic three-dimensional integration. Journal of Applied Physics, 2009, 106, .	1.1	18
236	Performance benchmarks for Si, III& $\pm x2013$; V, TFET, and carbon nanotube FET - re-thinking the technology assessment methodology for complementary logic applications., 2010, , .		18
237	Next-Generation Ultrahigh-Density 3-D Vertical Resistive Switching Memory (VRSM)—Part I: Accurate and Computationally Efficient Modeling. IEEE Transactions on Electron Devices, 2019, 66, 5139-5146.	1.6	18
238	Micrometer-Scale Magnetic-Resonance-Coupled Radio-Frequency Identification and Transceivers for Wireless Sensors in Cells. Physical Review Applied, 2017, 8, .	1.5	18
239	Synthesis of Metal Chalcogenide Nanodot Arrays Using Block Copolymer-Derived Nanoreactors. Nano Letters, 2007, 7, 3504-3507.	4.5	17
240	Metal Oxide Resistive Switching Memory. Springer Series in Materials Science, 2012, , 303-335.	0.4	17
241	Design guidelines for 3D RRAM cross-point architecture. , 2014, , .		17
242	Two-Fold Reduction of Switching Current Density in Phase Change Memory Using Biâ,,Teâ,f Thermoelectric Interfacial Layer. IEEE Electron Device Letters, 2020, 41, 1657-1660.	2,2	17
243	Finite element analysis and analytical simulations of Suspended Gate-FET for ultra-low power inverters. Solid-State Electronics, 2008, 52, 1374-1381.	0.8	16
244	Monolithic integration of CMOS VLSI and CNT for hybrid nanotechnology applications. , 2008, , .		16
245	Measurement of Subnanosecond Delay Through Multiwall Carbon-Nanotube Local Interconnects in a CMOS Integrated Circuit. IEEE Transactions on Electron Devices, 2009, 56, 43-49.	1.6	16
246	Ultra-low power Al <inf>2</inf> O <inf>3</inf> -based RRAM with 1μA reset current. , 2010, , .		16
247	Grain Boundaries, Phase Impurities, and Anisotropic Thermal Conduction in Phase-Change Memory. IEEE Electron Device Letters, 2011, 32, 961-963.	2.2	16
248	Cu diffusion barrier: Graphene benchmarked to TaN for ultimate interconnect scaling. , 2015, , .		16
249	3-D Resistive Memory Arrays: From Intrinsic Switching Behaviors to Optimization Guidelines. IEEE Transactions on Electron Devices, 2015, 62, 3160-3167.	1.6	16
250	Carbon nanotube transistor circuits. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, 2006, , .	0.0	15
251	Crystallization properties and their drift dependence in phase-change memory studied with a micro-thermal stage. Journal of Applied Physics, 2011, 110, .	1.1	15
252	Illusion of large on-chip memory by networked computing chips for neural network inference. Nature Electronics, 2021, 4, 71-80.	13.1	15

#	Article	IF	CITATIONS
253	Carbon nanotube transistor compact model for circuit design and performance optimization. ACM Journal on Emerging Technologies in Computing Systems, 2008, 4, 1-20.	1.8	14
254	Modeling and Performance Comparison of 1-D and 2-D Devices Including Parasitic Gate Capacitance and Screening Effect. IEEE Nanotechnology Magazine, 2008, 7, 720-727.	1.1	14
255	Scaling silicon MOS devices to their limits. Microelectronic Engineering, 1996, 32, 271-282.	1.1	13
256	The Impact of Device Footprint Scaling on High-Performance CMOS Logic Technology. IEEE Transactions on Electron Devices, 2007, 54, 1148-1155.	1.6	13
257	Carbon Nanotube Quantum Capacitance for Nonlinear Terahertz Circuits. IEEE Nanotechnology Magazine, 2009, 8, 31-36.	1.1	13
258	Experimental demonstration of In0.53Ga0.47As field effect transistors with scalable nonalloyed source/drain contacts. Applied Physics Letters, 2011, 98, .	1.5	13
259	Fabrication and Characterization of Nanoscale NiO Resistance Change Memory (RRAM) Cells With Confined Conduction Paths. IEEE Transactions on Electron Devices, 2011, 58, 3270-3275.	1.6	13
260	DSA-aware detailed routing for via layer optimization. , 2014, , .		13
261	Engineering a Large Scale Indium Nanodot Array for Refractive Index Sensing. ACS Applied Materials & Large Scale 1, 31871-31877.	4.0	13
262	A Physics-Based Compact Model for CBRAM Retention Behaviors Based on Atom Transport Dynamics and Percolation Theory. IEEE Electron Device Letters, 2019, 40, 647-650.	2.2	13
263	Analysis of the design space available for high-kgate dielectrics in nanoscale MOSFETs. Superlattices and Microstructures, 2000, 28, 485-491.	1.4	12
264	Diblock copolymer directed self-assembly for CMOS device fabrication., 2006, 6156, 329.		12
265	Scaling properties of phase change materials., 2007,,.		12
266	1D thickness scaling study of phase change material (Ge <inf>2</inf> Sb <inf>2</inf> Te <inf>5</inf>) using a pseudo 3-terminal device., 2009,,.		12
267	Size limitation of cross-point memory array and its dependence on data storage pattern and device parameters., 2010,,.		12
268	Investigation of Trap Spacing for the Amorphous State of Phase-Change Memory Devices. IEEE Transactions on Electron Devices, 2011, 58, 4370-4376.	1.6	12
269	Electrode/oxide interface engineering by inserting single-layer graphene: Application for HfO <inf>x</inf> -based resistive random access memory. , 2012, , .		12
270	Ultrathin (& $\#$ x223C;2nm) HfO<inf>x</inf> as the fundamental resistive switching element: Thickness scaling limit, stack engineering and 3D integration., 2014,,.		12

#	Article	IF	CITATIONS
271	Atomically thin graphene plane electrode for 3D RRAM., 2014,,.		12
272	Surface Science of Catalyst Dynamics for Aligned Carbon Nanotube Synthesis on a Full-Scale Quartz Wafer. Journal of Physical Chemistry C, 2009, 113, 8002-8008.	1.5	11
273	Carbon nanotube circuits: Living with imperfections and variations. , 2010, , .		11
274	Technology Assessment Methodology for Complementary Logic Applications Based on Energy–Delay Optimization. IEEE Transactions on Electron Devices, 2011, 58, 2430-2439.	1.6	11
275	Microthermal Stage for Electrothermal Characterization of Phase-Change Memory. IEEE Electron Device Letters, 2011, 32, 952-954.	2.2	11
276	Phase Change Memory: Scaling and applications. , 2012, , .		11
277	DSA template optimization for contact layer in 1D standard cell design. , 2014, , .		11
278	Carbon nanotubes for high-performance logic. MRS Bulletin, 2014, 39, 719-726.	1.7	11
279	Selector Requirements for Tera-Bit Ultra-High-Density 3D Vertical RRAM. , 2018, , .		11
280	Electro-Thermal Confinement Enables Improved Superlattice Phase Change Memory. IEEE Electron Device Letters, 2022, 43, 204-207.	2.2	11
281	Bandgap Extraction at 10 K to Enable Leakage Control in Carbon Nanotube MOSFETs. IEEE Electron Device Letters, 2022, 43, 490-493.	2.2	11
282	Physics-based compact model of III-V heterostructure FETs for digital logic applications. , 2008, , .		10
283	A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS. , 2008, , .		10
284	Analog Nanoelectromechanical Relay With Tunable Transconductance. IEEE Electron Device Letters, 2009, 30, 1143-1145.	2.2	10
285	Recent progress of phase change memory (PCM) and resistive switching random access memory (RRAM). , 2010, , .		10
286	A phenomenological model of oxygen ion transport for metal oxide resistive switching memory. , 2010, , .		10
287	Physics-Based Compact Model for Ill–V Digital Logic FETs Including Gate Tunneling Leakage and Parasitic Capacitance. IEEE Transactions on Electron Devices, 2011, 58, 1068-1075.	1.6	10
288	Air-stable technique for fabricating n-type carbon nanotube FETs., 2011,,.		10

#	Article	IF	CITATIONS
289	Recent progress of resistive switching random access memory (RRAM)., 2012,,.		10
290	Increasing the semiconducting fraction in ensembles of single-walled carbon nanotubes. Carbon, 2012, 50, 5093-5098.	5.4	10
291	Statistical assessment methodology for the design and optimization of cross-point RRAM arrays. , 2014, , .		10
292	Microsecond transient thermal behavior of HfOx-based resistive random access memory using a micro thermal stage (MTS). , 2016 , , .		10
293	Self-assembly for electronics. MRS Bulletin, 2020, 45, 807-814.	1.7	10
294	Intracellular detection and communication of a wireless chip in cell. Scientific Reports, 2021, 11, 5967.	1.6	10
295	Modeling Carbon Nanotube Sensors. IEEE Sensors Journal, 2007, 7, 1356-1357.	2.4	9
296	Effect of Parasitic Resistance and Capacitance on Performance of InGaAs HEMT Digital Logic Circuits. IEEE Transactions on Electron Devices, 2009, 56, 1161-1164.	1.6	9
297	Monolithic three-dimensional integrated circuits using carbon nanotube FETs and interconnects. , 2009, , .		9
298	CMOS technology roadmap projection including parasitic effects. , 2009, , .		9
299	First demonstration of phase change memory device using solution processed GeTe nanoparticles. , 2011, , .		9
300	Intrinsic limits of leakage current in self-heating-triggered threshold switches. Applied Physics Letters, 2019, 114, .	1.5	9
301	Experimental verification of the mechanism of hot-carrier-induced photon emission in n-MOSFETs using an overlapping CCD gate structure. IEEE Electron Device Letters, 1992, 13, 389-391.	2.2	8
302	Fabrication of ultrathin, highly uniform thin-film SOI MOSFETs with low series resistance using pattern-constrained epitaxy. IEEE Transactions on Electron Devices, 1997, 44, 1131-1135.	1.6	8
303	Monitoring hot-carrier degradation in SOI MOSFETs by hot-carrier luminescence techniques. IEEE Transactions on Electron Devices, 1998, 45, 1135-1139.	1.6	8
304	High-speed graphene interconnects monolithically integrated with CMOS ring oscillators operating at 1.3 GHz. , 2009, , .		8
305	Titanium nitride sidewall stringer process for lateral nanoelectromechanical relays. , 2010, , .		8
306	Novel contact structures for high mobility channel materials. MRS Bulletin, 2011, 36, 112-120.	1.7	8

#	Article	IF	Citations
307	System Level Benchmarking with Yield-Enhanced Standard Cell Library for Carbon Nanotube VLSI Circuits. ACM Journal on Emerging Technologies in Computing Systems, 2014, 10, 1-19.	1.8	8
308	Partitioning Electrostatic and Mechanical Domains in Nanoelectromechanical Relays. Journal of Microelectromechanical Systems, 2015, 24, 592-598.	1.7	8
309	Ultrathin Three-Monolayer Tunneling Memory Selectors. ACS Nano, 2021, 15, 8484-8491.	7. 3	8
310	Carbon Nanotube Device Modeling and Circuit Simulation. Integrated Circuits and Systems, 2009, , 133-162.	0.2	7
311	Spectroscopic Evidence for Exceptional Thermal Contribution to Electron Beam-Induced Fragmentation. Journal of Physical Chemistry C, 2010, 114, 22064-22068.	1.5	7
312	Optical Absorption Enhancement: Optical Absorption Enhancement in Freestanding GaAs Thin Film Nanopyramid Arrays (Adv. Energy Mater. 10/2012). Advanced Energy Materials, 2012, 2, 1150-1150.	10.2	7
313	Cross plane thermal conductance of graphene-metal interfaces. , 2014, , .		7
314	Synaptic Devices Based on Phase-Change Memory. , 2017, , 19-51.		7
315	Ultrafast Accelerated Retention Test Methodology for RRAM Using Micro Thermal Stage. IEEE Electron Device Letters, 2017, 38, 863-866.	2.2	7
316	Coming Up N3XT, After 2D Scaling of Si CMOS. , 2018, , .		7
317	Carbon Nanotube Transistor Circuits - Models and Tools for Design and Performance Optimization. IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers, 2006, , .	0.0	6
318	A 0.5 μm pixel frame-transfer CCD image sensor in 110 nm CMOS., 2007,,.		6
319	Energy-Reversible Complementary NEM Logic Gates. , 2008, , .		6
320	Modeling of schottky and ohmic contacts between metal and graphene nanoribbons using extended h& $\#x00FC$; ckel theory (EHT)-based NEGF method., 2008,,.		6
321	Extending Technology Roadmap by Selective Device Footprint Scaling and Parasitics Engineering. International Power Modulator Symposium and High-Voltage Workshop, 2008, , .	0.0	6
322	Recent Progress of Phase Change Memory (PCM) and Resistive Switching Random Access Memory (RRAM). , 2011 , , .		6
323	First demonstration of RRAM patterned by block copolymer self-assembly. , 2013, , .		6
324	Improved multi-level control of RRAM using pulse-train programming. , 2014, , .		6

#	Article	IF	Citations
325	Characterization and Modeling of the Conduction and Switching Mechanisms of HfO _x Based RRAM. Materials Research Society Symposia Proceedings, 2014, 1631, 1.	0.1	6
326	3D nanosystems enable embedded abundant-data computing. , 2017, , .		6
327	Photoelectrochemical Water Oxidation by GaAs Nanowire Arrays Protected with Atomic Layer Deposited NiO x Electrocatalysts. Journal of Electronic Materials, 2018, 47, 932-937.	1.0	6
328	Gate Quantum Capacitance Effects in Nanoscale Transistors. Nano Letters, 2019, 19, 7130-7137.	4.5	6
329	Molybdenum oxide on carbon nanotube: Doping stability and correlation with work function. Journal of Applied Physics, 2020, 128, 045111.	1.1	6
330	Heterogeneous 3D Nano-systems: The N3XT Approach?. The Frontiers Collection, 2020, , 127-151.	0.1	6
331	Technology Projection Using Simple Compact Models. , 2009, , .		5
332	Synergetic carbon nanotube growth. Carbon, 2013, 62, 61-68.	5.4	5
333	RRAM based synaptic devices for neuromorphic visual systems. , 2015, , .		5
334	Disturbance characteristics of half-selected cells in a cross-point resistive switching memory array. Nanotechnology, 2016, 27, 215204.	1.3	5
335	Dual-Layer Dielectric Stack for Thermally-Isolated Low-Power Phase-Change Memory. , 2017, , .		5
336	Internalization of subcellular-scale microfabricated chips by healthy and cancer cells. PLoS ONE, 2018, 13, e0194712.	1.1	5
337	Demonstration of 40-nm Channel Length Top-Gate p-MOSFET of WS $<$ sub $>2<$ /sub $>$ Channel Directly Grown on SiO54 x 55i Substrates Using Area-Selective CVD Technology. IEEE Transactions on Electron Devices, 2019, 66, 5381-5386.	1.6	5
338	CeO ₂ Doping of Hf _{0.5} Zr _{0.5} O ₂ Thin Films for High Endurance Ferroelectric Memories. Advanced Electronic Materials, 2022, 8, .	2.6	5
339	Impact of Metal Hybridization on Contact Resistance and Leakage Current of Carbon Nanotube Transistors. IEEE Electron Device Letters, 2022, 43, 1367-1370.	2.2	5
340	1-D and $2-D$ Devices Performance Comparison Including Parasitic Gate Capacitance and Screening Effect. , 2007, , .		4
341	A Composite Circuit Model for NDR Devices in Random Access Memory Cells. IEEE Transactions on Electron Devices, 2007, 54, 776-783.	1.6	4
342	Fabrication and characterization of emerging nanoscale memory. , 2009, , .		4

#	Article	IF	CITATIONS
343	Carbon nanotube imperfection-immune digital VLSI: Frequently asked questions updated., 2011,,.		4
344	Capacity optimization of emerging memory systems: A shannon-inspired approach to device characterization. , 2014, , .		4
345	Compact modeling and design optimization of carbon nanotube field-effect transistors for the sub-10-nm technology nodes. , 2015, , .		4
346	Bidirectional Analog Conductance Modulation for RRAM-Based Neural Networks. IEEE Transactions on Electron Devices, 2020, 67, 4904-4910.	1.6	4
347	Reduced HfOâ,, Resistive Memory Variability by Inserting a Thin SnOâ,, as Oxygen Stopping Layer. IEEE Electron Device Letters, 2021, 42, 1778-1781.	2.2	4
348	Gate current injection in MOSFET's with a split-gate (virtual drain) structure. IEEE Electron Device Letters, 1993, 14, 262-264.	2.2	3
349	Digital Imaging. IEEE Micro, 1998, 18, 12-13.	1.8	3
350	Analytical Model of Carbon Nanotube Electrostatics: Density of States, Effective Mass, Carrier Density, and Quantum Capacitance. , 2007, , .		3
351	The future of CMOS scaling - parasitics engineering and device footprint scaling. , 2008, , .		3
352	Fermi-Level Depinning of GaAs for Ohmic Contacts. , 2008, , .		3
353	Decoupled thermal resistances of phase change material and their impact on PCM devices. , 2010, , .		3
354	2D analytical model for the study of NEM relay device scaling., 2011,,.		3
355	Viability Study of All-III–V SRAM for Beyond-22-nm Logic Circuits. IEEE Electron Device Letters, 2011, 32, 877-879.	2.2	3
356	Metal/III–V effective barrier height tuning using ALD high-κ dipoles. , 2011, , .		3
357	Carbon-Based Nanomaterial for Nanoelectronics. ECS Transactions, 2011, 35, 259-269.	0.3	3
358	Scaling behavior of PCM cells in off-state conduction. , 2012, , .		3
359	Graphene interconnect lifetime under high current stress. , 2012, , .		3
360	Carbon Nanotube Circuits: Opportunities and Challenges. , 2013, , .		3

#	Article	IF	CITATIONS
361	3D RRAM: Design and optimization. , 2014, , .		3
362	Robust design and experimental demonstrations of carbon nanotube digital circuits. , 2014, , .		3
363	Physical Layout Design of Directed Self-Assembly Guiding Alphabet for IC Contact Hole/via Patterning. , 2015, , .		3
364	Energy-Efficient Phase Change Memory Programming by Nanosecond Pulses. , 2018, , .		3
365	Scanning microwave imaging of optically patterned Ge2Sb2Te5. Applied Physics Letters, 2019, 114, 093106.	1.5	3
366	Design Space Analysis for Cross-Point 1S1MTJ MRAM: Selector–MTJ Cooptimization. IEEE Transactions on Electron Devices, 2020, 67, 3102-3108.	1.6	3
367	Top-gated FETs/inverters with diblock copolymer self-assembled 20 nm contact holes. , 2009, , .		2
368	Emerging memory devices., 2011,,.		2
369	Template Patterning: Flexible Control of Block Copolymer Directed Self-Assembly using Small, Topographical Templates: Potential Lithography Solution for Integrated Circuit Contact Hole Patterning (Adv. Mater. 23/2012). Advanced Materials, 2012, 24, 3082-3082.	11.1	2
370	Layout optimization and template pattern verification for directed self-assembly (DSA)., 2015,,.		2
371	A simple technique to design microfluidic devices for system integration. Analytical Methods, 2017, 9, 6349-6356.	1.3	2
372	Carbon Nanotubes for Monolithic 3D ICs., 2017, , 315-333.		2
373	First Principles Study of Memory Selectors using Heterojunctions of 2D Layered Materials. , 2018, , .		2
374	Vertical Sidewall MoS ₂ Growth and Transistors., 2019,,.		2
375	Hyperdimensional computing nanosystem: in-memory computing using monolithic 3D integration of RRAM and CNFET., 2020, , 195-219.		2
376	Application-driven synthesis and characterization of hexagonal boron nitride deposited on metals and carbon nanotubes. 2D Materials, 2021, 8, 045024.	2.0	2
377	Imperfection-Immune Carbon Nanotube VLSI Circuits. , 2011, , 277-305.		2
378	Modeling the Impact of Body-to-body Leakage in Partially-Depleted SOI CMOS Technology. , 2001, , 230-233.		2

#	Article	IF	CITATIONS
379	Neuro-inspired computing with emerging memories: where device physics meets learning algorithms. , 2019, , .		2
380	Laser-induced patterning for a diffraction grating using the phase change material of Ge ₂ Sb ₂ Te ₅ (GST) as a spatial light modulator in X-ray optics: a proof of concept. Optical Materials Express, 2022, 12, 1408.	1.6	2
381	An analytical model for intrinsic carbon nanotube FETs. , 2008, , .		1
382	Diblock copolymer directed self-assembly for CMOS device fabrication. Proceedings of SPIE, 2008, , .	0.8	1
383	Measurement of anisotropy in the thermal conductivity of Ge <inf>2</inf> Sb <inf>2</inf> 5films., 2009,,.		1
384	Device and circuit interactive design and optimization beyond the conventional scaling era. , 2010, , .		1
385	Tight-binding study of Γ-L bandstructure engineering for ballistic III–V nMOSFETs. , 2011, , .		1
386	Direct Measurement of Trap Spacing in Phase Change Memory Cells Using ATE Devices. , 2011, , .		1
387	Carbon electronics — From material synthesis to circuit demonstration., 2011,,.		1
388	GaAs buffer layer technique for vertical nanowire growth on Si substrate. Applied Physics Letters, 2014, 104, 083113.	1.5	1
389	Memory Devices: In Situ Tuning of Switching Window in a Gate-Controlled Bilayer Graphene-Electrode Resistive Memory Device (Adv. Mater. 47/2015). Advanced Materials, 2015, 27, 7766-7766.	11.1	1
390	Statistical study of RRAM MLC SET variability induced by filament morphology. , 2017, , .		1
391	AC stress and electronic effects on SET switching of HfO2 RRAM. Applied Physics Letters, 2017, 111, 093502.	1.5	1
392	Research opportunities for nanoscale CMOS. , 2006, , .		0
393	Device Footprint Scaling for Ultra Thin Body Fully Depleted SOI. , 2007, , .		O
394	Sub-ns Delay Through Multi-Wall Carbon Nanotube Local Interconnects in a CMOS Integrated Circuit. , 2008, , .		0
395	Analytical Degenerate Carrier Density and Quantum Capacitance for Semiconducting Carbon Nanotubes. , 2008, , .		0
396	Crystallization Characteristics Of Phase Change Nanoparticle Arrays Fabricated By Self-Assembly Based Lithography. Materials Research Society Symposia Proceedings, 2008, 1072, 1.	0.1	0

#	Article	IF	CITATIONS
397	Hole Mobility Characteristics under Electrical Stress for Surface-Channel Germanium Transistors with High-κ Gate Stack. Japanese Journal of Applied Physics, 2008, 47, 2544-2547.	0.8	0
398	SLICE image analysis for diblock copolymer characterization and process optimization. , 2010, , .		0
399	Carbon nanotube field-effect transistors. , 0, , 191-232.		O
400	Monolithic III& $\#x2013; V$ nanowire PV for photoelectrochemical hydrogen generation. , 2010, , .		0
401	Modeling and analysis of III–V logic FETs for devices and circuits: Sub-22nm technology III–V SRAM cell design. , 2010, , .		O
402	Single-Tube Characterization Methodology for Experimental and Analytical Evaluation of Carbon Nanotube Synthesis. Japanese Journal of Applied Physics, 2012, 51, 04DB02.	0.8	0
403	Electrical properties of CuPc-based OTFTs with atomic layer deposited HfAlO gate dielectric. , 2012, , .		0
404	Resistive switching random access memory & \pm x2014; Materials, device, interconnects, and scaling considerations. , 2012, , .		0
405	Compact models of emerging devices. , 2013, , .		O
406	Impact of Ill–V and Ge Devices on Circuit Performance. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21, 1189-1200.	2.1	0
407	Impact of pulse rise time on programming of cross-point RRAM arrays. , 2014, , .		O
408	Transforming nanodevices to next generation nanosystems. , 2016, , .		0
409	Memory — The N3XT frontier. , 2016, , .		0
410	Sub-15 nm nanowires enabled by cryo pulsed self-aligned nanotrench ablation on carbon nanotubes. , 2017, , .		0
411	Beyond-Silicon Devices: Considerations for Circuits and Architectures. , 2019, , 1-19.		0
412	Single-Tube Characterization Methodology for Experimental and Analytical Evaluation of Carbon Nanotube Synthesis. Japanese Journal of Applied Physics, 2012, 51, 04DB02.	0.8	0