Daniel J Preston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2440310/publications.pdf Version: 2024-02-01

DANIEL I DDESTO

#	Article	IF	CITATIONS
1	Efficacy and self-similarity of SARS-CoV-2 thermal decontamination. Journal of Hazardous Materials, 2022, 429, 127709.	6.5	5
2	Temporal Evolution of Surface Contamination under Ultra-high Vacuum. Langmuir, 2022, 38, 1252-1258.	1.6	10
3	Alteration of pool boiling heat transfer on metallic surfaces by in situ oxidation. International Journal of Heat and Mass Transfer, 2022, 185, 122320.	2.5	10
4	A buckling-sheet ring oscillator for electronics-free, multimodal locomotion. Science Robotics, 2022, 7, eabg5812.	9.9	25
5	Enhancement of Boiling with Scalable Sandblasted Surfaces. ACS Applied Materials & Interfaces, 2022, 14, 9788-9794.	4.0	16
6	The Soft Compiler: A Web-Based Tool for the Design of Modular Pneumatic Circuits for Soft Robots. IEEE Robotics and Automation Letters, 2022, 7, 6060-6066.	3.3	8
7	Tube-Balloon Logic for the Exploration of Fluidic Control Elements. IEEE Robotics and Automation Letters, 2022, 7, 5483-5488.	3.3	4
8	A Dataâ€Ðriven Review of Soft Robotics. Advanced Intelligent Systems, 2022, 4, .	3.3	28
9	A Textile-Based Approach to Wearable Haptic Devices. , 2022, , .		5
10	Ultraefficient Electrocatalytic Hydrogen Evolution from Strain-Engineered, Multilayer MoS ₂ . Nano Letters, 2022, 22, 5742-5750.	4.5	27
11	Elastic-instability–enabled locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
12	Pneumatic soft robots take a step toward autonomy. Science Robotics, 2021, 6, .	9.9	27
13	Bio-inspired design of soft mechanisms using a toroidal hydrostat. Cell Reports Physical Science, 2021, 2, 100572.	2.8	7
14	Effect of daily temperature fluctuations on virus lifetime. Science of the Total Environment, 2021, 789, 148004.	3.9	8
15	Analysis of Powders Containing Illicit Drugs Using Magnetic Levitation. Angewandte Chemie, 2020, 132, 884-891.	1.6	4
16	Analysis of Powders Containing Illicit Drugs Using Magnetic Levitation. Angewandte Chemie - International Edition, 2020, 59, 874-881.	7.2	32
17	Rücktitelbild: Analysis of Powders Containing Illicit Drugs Using Magnetic Levitation (Angew. Chem.) Tj ETQq1	1 0.7843 1.6	14 rgBT /Ove
18	Jumping droplet condensation in internal convective vapor flow. International Journal of Heat and	2.5	9

Mass Transfer, 2020, 163, 120398.

DANIEL J PRESTON

#	Article	IF	CITATIONS
19	Polymer Infused Porous Surfaces for Robust, Thermally Conductive, Self-Healing Coatings for Dropwise Condensation. ACS Nano, 2020, 14, 14878-14886.	7.3	46
20	Robotic Textiles: Smart Thermally Actuating Textiles (Adv. Mater. Technol. 8/2020). Advanced Materials Technologies, 2020, 5, 2070050.	3.0	0
21	A predictive model of the temperature-dependent inactivation of coronaviruses. Applied Physics Letters, 2020, 117, 060601.	1.5	63
22	Heat transfer suppression by suspended droplets on microstructured surfaces. Applied Physics Letters, 2020, 116, .	1.5	15
23	Soft Non-Volatile Memory for Non-Electronic Information Storage in Soft Robots. , 2020, , .		12
24	Smart Thermally Actuating Textiles. Advanced Materials Technologies, 2020, 5, 2000383.	3.0	35
25	Effects of airborne hydrocarbon adsorption on pool boiling heat transfer. Applied Physics Letters, 2020, 116, .	1.5	18
26	Fabricating 3D Structures by Combining 2D Printing and Relaxation of Strain. Advanced Materials Technologies, 2019, 4, 1800299.	3.0	36
27	A soft ring oscillator. Science Robotics, 2019, 4, .	9.9	128
28	Enhanced Condensation for Improved Energy Efficiency. Joule, 2019, 3, 1182-1184.	11.7	26
29	Storage of Information Using Small Organic Molecules. ACS Central Science, 2019, 5, 911-916.	5.3	70
30	Digital logic for soft devices. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7750-7759.	3.3	170
31	Jumping Droplets Push the Boundaries of Condensation Heat Transfer. Joule, 2018, 2, 205-207.	11.7	35
32	Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces. Scientific Reports, 2018, 8, 540.	1.6	111
33	Effects of millimetric geometric features on dropwise condensation under different vapor conditions. International Journal of Heat and Mass Transfer, 2018, 119, 931-938.	2.5	55
34	Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer. Langmuir, 2018, 34, 4658-4664.	1.6	42
35	A soft, bistable valve for autonomous control of soft actuators. Science Robotics, 2018, 3, .	9.9	316
36	Toward Condensation-Resistant Omniphobic Surfaces. ACS Nano, 2018, 12, 11013-11021.	7.3	62

DANIEL J PRESTON

#	Article	IF	CITATIONS
37	Active fume hood sash height monitoring with audible feedback. Energy Reports, 2018, 4, 645-652.	2.5	5
38	High-Throughput Density Measurement Using Magnetic Levitation. Journal of the American Chemical Society, 2018, 140, 7510-7518.	6.6	43
39	Electrowetting-on-dielectric actuation of a spatial and angular manipulation MEMS stage. , 2017, , .		2
40	Nanoengineered materials for liquid–vapour phase-change heat transfer. Nature Reviews Materials, 2017, 2, .	23.3	431
41	An Ultrathin Nanoporous Membrane Evaporator. Nano Letters, 2017, 17, 6217-6220.	4.5	60
42	Coexistence of Pinning and Moving on a Contact Line. Langmuir, 2017, 33, 8970-8975.	1.6	24
43	Design of Lubricant Infused Surfaces. ACS Applied Materials & amp; Interfaces, 2017, 9, 42383-42392.	4.0	131
44	Porous Cu Nanowire Aerosponges from One‣tep Assembly and their Applications in Heat Dissipation. Advanced Materials, 2016, 28, 1413-1419.	11.1	109
45	Electrically induced drop detachment and ejection. Physics of Fluids, 2016, 28, .	1.6	44
46	Electrowetting-on-dielectric actuation of a vertical translation and angular manipulation stage. Applied Physics Letters, 2016, 109, .	1.5	18
47	Nanoengineered Surfaces for Thermal Energy Conversion. Journal of Physics: Conference Series, 2015, 660, 012036.	0.3	2
48	Scalable Graphene Coatings for Enhanced Condensation Heat Transfer. Nano Letters, 2015, 15, 2902-2909.	4.5	236
49	Recent Developments in Altered Wettability for Enhancing Condensation. , 2015, , 85-131.		6
50	Jumping Droplet Electrostatic Charging and Effect on Vapor Drag. Journal of Heat Transfer, 2014, 136, .	1.2	20
51	Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics. Applied Physics Letters, 2014, 105, .	1.5	154
52	Jumping-droplet electrostatic energy harvesting. Applied Physics Letters, 2014, 105, .	1.5	163
53	Ostwald Ripening During Freezing on Scalable Superhydrophobic Surfaces. Journal of Heat Transfer, 2014, 136, .	1.2	1
54	Effect of Hydrocarbon Adsorption on the Wetting of Rare Earth Oxides. , 2014, , .		1

#	Article	IF	CITATIONS
55	Electric-Field-Enhanced Jumping-Droplet Condensation. , 2014, , .		0
56	Cost–benefit analysis of retrofit of high-intensity discharge factory lighting with energy-saving alternatives. Energy Efficiency, 2013, 6, 255-269.	1.3	6
57	Electrostatic charging of jumping droplets. Nature Communications, 2013, 4, 2517.	5.8	201
58	Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces. ACS Nano, 2013, 7, 11043-11054.	7.3	180
59	An Expanding Foamâ€Fabric Orthopedic Cast. Advanced Materials Technologies, 0, , 2101563.	3.0	1