
Helmut Sigel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2440165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acid–base properties of an antivirally active acyclic nucleoside phosphonate: (<i>S</i>)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA). New Journal of Chemistry, 2022, 46, 6484-6493.	1.4	3
2	Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations. Molecules, 2022, 27, 2625.	1.7	4
3	Metal Ion-Coordinating Properties in Aqueous Solutions of the Antivirally Active Nucleotide Analogue (S)-9-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA) - Quantification of Complex Isomeric Equilibria. European Journal of Inorganic Chemistry, 2019, 2019, 3892-3903.	1.0	4
4	The bio-relevant metals of the periodic table of the elements. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2019, 74, 461-471.	0.3	13
5	Metal ion complexes of nucleoside phosphorothioates reflecting the ambivalent properties of lead(<scp>ii</scp>). New Journal of Chemistry, 2018, 42, 7551-7559.	1.4	6
6	Metal-ion binding properties of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC,) Tj ETQq0 0 0 r 472, 283-294.	gBT /Over 1.2	lock 10 Tf 50 5
7	Intramolecular π-stacks in mixed-ligand copper(II) complexes formed by heteroaromatic amines and antivirally active acyclic nucleotide analogs carrying a hydroxy-2-(phosphonomethoxy)propyl residue [‡] . Journal of Coordination Chemistry, 2018, 71, 1910-1934.	0.8	4
8	11. Complex Formation of Lead(II) with Nucleotides and Their Constituents. , 2017, 17, 319-402.		2
9	Lead $\hat{a} \in \hat{I}$ Its Effects on Environment and Health. , 2017, , .		10
10	Acid–base and metal ion-binding properties of thiopyrimidine derivatives. Coordination Chemistry Reviews, 2016, 327-328, 200-220.	9.5	5
11	(N7)-Platination and its effect on (N1)H-acidification in nucleoside phosphate derivatives. Inorganica Chimica Acta, 2016, 452, 137-151.	1.2	4
12	Extent of intramolecular π stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and the anticancer and antivirally active 9-[2-(phosphonomethoxy)ethyl]guanine (PMEG). A comparison with related acyclic nucleotide analogues. Polyhedron, 2016, 103, 248-260.	1.0	5
13	Connectivity patterns and rotamer states of nucleobases determine acid–base properties of metalated purine quartets. Journal of Inorganic Biochemistry, 2015, 148, 93-104.	1.5	7
14	Solution properties of metal ion complexes formed with the antiviral and cytostatic nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (PME2A6DMAP). Canadian Journal of Chemistry, 2014, 92, 771-780.	0.6	6
15	Comparison of the π-stacking properties of purine versus pyrimidine residues. Some generalizations regarding selectivity. Journal of Biological Inorganic Chemistry, 2014, 19, 691-703.	1.1	17
16	Complex Formation of Cadmium with Sugar Residues, Nucleobases, Phosphates, Nucleotides, and Nucleic Acids. Metal Ions in Life Sciences, 2013, 11, 191-274.	2.8	21
17	Intrinsic Acid–Base Properties of a Hexaâ€2â€2â€deoxynucleoside Pentaphosphate, d(ApGpGpCpCpT): Neighboring Effects and Isomeric Equilibria. Chemistry - A European Journal, 2013, 19, 8163-8181.	1.7	19
18	Extent of Intramolecular Ï€ Stacks in Aqueous Solution in Mixedâ€Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and 1â€{2â€(Phosphonomethoxy)ethyl]cytosine (PMEC), a Relative of Antivirally Active Acyclic Nucleotide Analogues (Part 72) ^[1, 2] . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1661-1673.	0.6	6

#	Article	IF	CITATIONS
19	Extent of Intramolecular <i>ï€</i> â€Stacks in Aqueous Solution in Mixedâ€Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and Several 2â€Aminopurine Derivatives of the Antivirally Active Nucleotide Analog 9â€[2â€(Phosphonomethoxy)ethyl]adenine (PMEA). Chemistry and Biodiversity, 2012, 9, 2008-2034.	1.0	12
20	Steric guiding of metal ion binding to a purine residue by a non-coordinating amino group: Examplified by 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA), and by related compounds. Coordination Chemistry Reviews, 2012, 256, 260-278.	9.5	21
21	Probing the Metal-Ion-Binding Strength of the Hydroxyl Group. Chemical Reviews, 2011, 111, 4964-5003.	23.0	53
22	Preface: metals in the brain. Monatshefte Für Chemie, 2011, 142, 323-324.	0.9	0
23	Stability and Structure of Mixedâ€Ligand Metal Ion Complexes That Contain Ni 2+ , Cu 2+ , or Zn 2+ , and Histamine, as well as Adenosine 5′â€Triphosphate (ATP 4â^') or Uridine 5′â€Triphosphate (UTP 4â^'): An Int Network of Equilibria. Chemistry - A European Journal, 2011, 17, 5393-5403.	ri ca te	23
24	Understanding the Acid–Base Properties of Adenosine: The Intrinsic Basicities of N1, N3 and N7. Chemistry - A European Journal, 2011, 17, 8156-8164.	1.7	70
25	Structural and catalytic roles of metal ions in RNA. Metal Ions in Life Sciences, 2011, 9, vii-ix.	2.8	7
26	A Stability Concept for Metal Ion Coordination to Single-Stranded Nucleic Acids and Affinities of Individual Sites. Accounts of Chemical Research, 2010, 43, 974-984.	7.6	206
27	Metal ion-binding properties of 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA). Steric guiding of metal ion-coordination by the purine-amino group. Dalton Transactions, 2010, 39, 6344.	1.6	17
28	Xanthosine 5′-monophosphate (XMP). Acid–base and metal ion-binding properties of a chameleon-like nucleotide. Chemical Society Reviews, 2009, 38, 2465.	18.7	29
29	Intramolecular π–Ĩ€ stacking interactions in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and the nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antivirally active 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Inorganica Chimica Acta, 2009, 362, 799-810.	1.2	21
30	Influence of decreasing solvent polarity (1,4-dioxane/water mixtures) on the stability and structure of complexes formed by copper(II), 2,2′-bipyridine or 1,10-phenanthroline and guanosine 5′-diphosphate: evaluation of isomeric equilibria. Journal of Coordination Chemistry, 2009, 62, 23-39.	0.8	20
31	Acid–base and metal ion binding properties of 2-thiocytidine in aqueous solution. Journal of Biological Inorganic Chemistry, 2008, 13, 663-674.	1.1	10
32	Comparison of the Surprising Metalâ€lonâ€Binding Properties of 5―and 6â€Uracilmethylphosphonate (5Umpa ^{2â`'} and 6Umpa ^{2â`'}) in Aqueous Solution and Crystal Structures of the Dimethyl and Di(isopropyl) Esters of H ₂ (6Umpa). Chemistry - A European Journal, 2008, 14, 10036-10046.	1.7	11
33	Inosylyl(3′→5′)inosine (Ipl–). Acid–Base and Metal Ion-Binding Properties of a Dinucleoside Monophosphate in Aqueous Solution. Inorganic Chemistry, 2008, 47, 2641-2648.	1.9	10
34	Dynamics of Biomineralization and Biodemineralization. , 2008, 4, 413-456.		12
35	Cytochrome P450 and Steroid Hormone Biosynthesis. , 2007, , 361-396.		21

#	Article	IF	CITATIONS
37	Carbon-Carbon Bond Cleavage by P450 Systems. , 2007, , 397-435.		5
38	Drug Metabolism as Catalyzed by Human Cytochrome P450 Systems. , 2007, , 561-589.		6
39	Chemical Defense and Exploitation. Biotransformation of Xenobiotics by Cytochrome P450 Enzymes. , 2007, , 477-560.		7
40	Design and Engineering of Cytochrome P450 Systems. , 2007, , 437-476.		3
41	Structures of P450 Proteins and Their Molecular Phylogeny. , 2007, , 57-96.		9
42	Structural and Functional Mimics of Cytochromes P450. , 2007, , 27-55.		4
43	Cytochrome P450-Catalyzed Hydroxylations and Epoxidations. , 2007, , 319-359.		2
44	Extent of metal ion-sulfur binding in complexes of thiouracil nucleosides and nucleotides in aqueous solution. Journal of Inorganic Biochemistry, 2007, , .	1.5	0
45	Diversities and Similarities in P450 Systems: An Introduction. , 2007, , 1-26.		7
46	Aquatic P450 Species. , 2007, , 97-126.		1
47	Beyond Heme-Thiolate Interactions: Roles of the Secondary Coordination Sphere in Cytochrome P450 Systems. , 2007, , 267-284.		2
48	Leakage in Cytochrome P450 Reactions in Relation to Protein Structural Properties. , 2007, , 187-234.		6
49	Cytochrome P450 Enzymes: Observations from the Clinic. , 2007, , 591-617.		0
50	Cytochromes P450 - Structural Basis for Binding and Catalysis. , 2007, , 235-265.		3
51	Interactions of Cytochrome P450 with Nitric Oxide and Related Ligands. , 2007, , 285-317.		0
52	P450 Electron Transfer Reactions. , 2007, , 157-185.		1
53	Metal-Ion-Coordinating Properties of the Dinucleotide 2′-Deoxyguanylyl(5′→3′)-2′-deoxy-5′-guany (d(pGpG)3â^'): Isomeric Equilibria Including Macrochelated Complexes Relevant for Nucleic Acids. Chemistry - A European Journal, 2007, 13, 1804-1814.	late 1.7	24
54	Biogeochemistry of Nickel and Its Release into the Environment. , 2007, , 1-29.		20

4

Helmut Sigel

#	Article	IF	CITATIONS
55	Nickel Superoxide Dismutase. , 2007, , 417-443.		9
56	Biochemistry of the Nickel-Dependent Glyoxalase I Enzymes. , 2007, , 445-471.		6
57	Nickel in Acireductone Dioxygenase. , 2007, , 473-500.		18
58	The Nickel-Regulated Peptidyl Prolyl cis/trans Isomerase SlyD. , 2007, , 501-518.		1
59	Chaperones of Nickel Metabolism. , 2007, , 519-544.		7
60	The Role of Nickel in Environmental Adaptation of the Gastric Pathogen Helicobacter pylori. , 2007, , 545-579.		2
61	Nickel-Dependent Gene Expression. , 2007, , 581-618.		3
62	Nickel Toxicity and Carcinogenesis. , 2007, , 619-660.		12
63	Nickel in the Environment and Its Role in the Metabolism of Plants and Cyanobacteria. , 2007, , 31-62.		18
64	Nickel Ion Complexes of Amino Acids and Peptides. , 2007, , 63-107.		10
65	Complex Formation of Nickel(II) with Sugar Residues, Nucleobases, Phosphates, Nucleotides, and Nucleic Acids. , 2007, , 109-180.		6
66	Synthetic Models for the Active Sites of Nickel-Containing Enzymes. , 2007, , 181-239.		1
67	Urease: Recent Insights on the Role of Nickel. , 2007, , 241-277.		11
68	Nickel Iron Hydrogenases. , 2007, , 279-322.		14
69	Methyl-Coenzyme M Reductase and its Nickel Corphin Coenzyme F430 in Methanogenic Archaea. , 2007, , 323-356.		20
70	Acetyl-coenzyme A Synthases and Nickel-Containing Carbon Monoxide Dehydrogenases. , 2007, , 357-415.		13
71	New Ternary Complexes of Copper(II) with 2,2′-Bipyridine (Bpy) and Phosphocholine (PCh–) or the Quaternary 1-(2-Phosphonomethoxy)ethyl Derivative of 2,4-Diaminopyrimidine (PMEDAPy–). European Journal of Inorganic Chemistry, 2007, 2007, 1867-1873.	1.0	7
72	Extent of metal ion–sulfur binding in complexes of thiouracil nucleosides and nucleotides in aqueous solution. Journal of Inorganic Biochemistry, 2007, 101, 727-735.	1.5	26

#	Article	IF	CITATIONS
73	Evidence for intramolecular aromatic-ring stacking in the physiological pH range of the monodeprotonated xanthine residue in mixed-ligand complexes containing xanthosinate 5′-monophosphate (XMP). Dalton Transactions, 2006, , 5521-5529.	1.6	23
74	Acid–base properties of the nucleic-acid model 2′-deoxyguanylyl(5′→3′)-2′-deoxy-5′-guanylate, of related guanine derivatives. Organic and Biomolecular Chemistry, 2006, 4, 1085.	d(pGpG)3	–and
75	The Role of Aluminum in Neurotoxic and Neurodegenerative Processes. , 2006, , 371-393.		5
76	Metallic Prions: Mining the Core of Transmissible Spongiform Encephalopathies. , 2006, , 89-114.		0
77	The Malfunctioning of Copper Transport in Wilson and Menkes Diseases. , 2006, , 207-225.		1
78	Copper-Zinc Superoxide Dismutase and Familial Amyotrophic Lateral Sclerosis. , 2006, , 179-205.		0
79	In Vivo Assessment of Iron in Huntington's Disease and Other Age-Related Neurodegenerative Brain Diseases. , 2006, , 151-177.		1
80	Protein Folding, Misfolding, and Disease. , 2006, , 9-60.		3
81	Iron and its Role in Neurodegenerative Diseases. , 2006, , 227-279.		2
82	The Chemical Interplay between Catecholamines and Metal Ions in Neurological Diseases. , 2006, , 281-320.		7
83	Neurodegenerative Diseases and Metal Ions. A Concluding Overview. , 2006, , 427-435.		2
84	The Role of Metal Ions in Neurology. An Introduction. , 2006, , 1-7.		7
85	Metal Ion Binding Properties of Proteins Related to Neurodegeneration. , 2006, , 61-87.		1
86	The Role of Metal Ions in the Amyloid Precursor Protein and in Alzheimer's Disease. , 2006, , 115-123.		0
87	The Role of Iron in the Pathogenesis of Parkinson's Disease. , 2006, , 125-149.		11
88	Acid–Base and Metal-Ion-Binding Properties of Xanthosine 5′-Monophosphate (XMP) in Aqueous Solution: Complex Stabilities, Isomeric Equilibria, and Extent of Macrochelation. Chemistry - A European Journal, 2006, 12, 8106-8122.	1.7	20
89	Zinc Metalloneurochemistry: Physiology, Pathology, and Probes. , 2006, , 321-370.		13

90 Neurotoxicity of Cadmium, Lead, and Mercury. , 2006, , 395-425.

5

Helmut Sigel

#	Article	IF	CITATIONS
91	Nucleoside 5′-triphosphates: self-association, acid–base, and metal ion-binding properties in solution. Chemical Society Reviews, 2005, 34, 875.	18.7	217
92	Influence of Decreasing Solvent Polarity (1,4-Dioxane/Water Mixtures) on the Acid-Base and Copper(II)-Binding Properties of Guanosine 5?-Diphosphate. Helvetica Chimica Acta, 2005, 88, 406-425.	1.0	26
93	Nucleoside 5′-Triphosphates: Self-Association, Acid—Base, and Metal Ion-Binding Properties in Solution. ChemInform, 2005, 36, no.	0.1	0
94	Metal ion-binding properties of (N3)-deprotonated uridine, thymidine, and related pyrimidine nucleosides in aqueous solution. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7459-7464.	3.3	67
95	Acidâ^'Base and Metal-Ion-Binding Properties of 9-[2-(2-Phosphonoethoxy)ethyl]adenine (PEEA), a Relative of the Antiviral Nucleotide Analogue 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA). An Exercise on the Quantification of Isomeric Complex Equilibria in Solution. Inorganic Chemistry, 2005, 44. 5104-5117.	1.9	38
96	Nickel(II), Copper(II) and Zinc(II) Complexes of 9-[2- (Phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA), the 8-Aza Derivative of the Antiviral Nucleotide Analogue 9-[2-(Phosphonomethoxy)ethyl] adenine (PMEA). Quantification of Four Isomeric Species in Aqueous Solution. Bioinorganic Chemistry and Applications, 2004, 2, 331-352.	1.8	10
97	A quantitative appraisal of the ambivalent metal ion binding properties of cytidine in aqueous solution and an estimation of the anti–syn energy barrier of cytidine derivatives. Journal of Biological Inorganic Chemistry, 2004, 9, 365-373.	1.1	29
98	Quantification of isomeric equilibria formed by metal ion complexes of 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) and 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA). Derivatives of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Journal of Biological Inorganic Chemistry, 2004, 9, 961-972.	1.1	12
99	Two Metal Ions Coordinated to a Purine Residue Tolerate Each Other Well. Angewandte Chemie - International Edition, 2004, 43, 3793-3795.	7.2	38
100	Metal Ion Complexes of Antivirally Active Nucleotide Analogues. Conclusions Regarding Their Biological Action. ChemInform, 2004, 35, no.	0.1	0
101	Perturbation of the NH2 pKa Value of Adenine in Platinum(II) Complexes: Distinct Stereochemical Internucleobase Effects. Chemistry - A European Journal, 2004, 10, 1046-1057.	1.7	43
102	Acid–Base Properties of Xanthosine 5′-Monophosphate (XMP) and of Some Related Nucleobase Derivatives in Aqueous Solution: Micro Acidity Constant Evaluations of the (N1)H versus the (N3)H Deprotonation Ambiguity. Chemistry - A European Journal, 2004, 10, 5129-5137.	1.7	17
103	Intramolecular stacking interactions in ternary copper(II) complexes formed by a heteroaromatic amine and 9-[2-(2-phosphonoethoxy)ethyl]adenine, a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenineart. Journal of Inorganic Biochemistry, 2004, 98, 2114-2124.	1.5	18
104	Metal Ion-Binding Properties of (1H-Benzimidazol-2-yl-methyl)phosphonate (Bimp2-) in Aqueous Solution.⊥Isomeric Equilibria, Extent of Chelation, and a New Quantification Method for the Chelate Effect. Inorganic Chemistry, 2004, 43, 1311-1322.	1.9	52
105	Metal ion complexes of antivirally active nucleotide analogues. Conclusions regarding their biological action. Chemical Society Reviews, 2004, 33, 191.	18.7	69
106	Solution Structures of Binary and Ternary Metal Ion Complexes of 9-(5-Phosphonopentyl)adenine (3′-deoxa-PEEA). A Nucleotide Analogue Related to the Antivirally Active 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA). European Journal of Inorganic Chemistry, 2003, 2003, 2937-2947.	1.0	4
107	Stabilities and Isomeric Equilibria in Aqueous Solution of Monomeric Metal Ion Complexes of Adenosine 5′-Diphosphate (ADP3) in Comparison with Those of Adenosine 5′-Monophosphate (AMP2). Chemistry - A European Journal, 2003, 9, 881-892.	1.7	85
108	Complex Formation of Divalent Metal Ions with Uridine 5′-O-Thiomonophosphate or Methyl Thiophosphate: Comparison of Complex Stabilities with Those of the Parent Phosphate Ligands. ChemBioChem, 2003, 4, 593-602.	1.3	29

#	Article	IF	CITATIONS
109	Stability and structure of binary and ternary metal ion complexes in aqueous solution of the quaternary 1-[2-(phosphonomethoxy)ethyl] derivative of 2,4-diaminopyrimidine (PMEDAPyâ`'). Properties of an acyclic nucleotide analogue. Polyhedron, 2003, 22, 1067-1076.	1.0	17
110	Stability constants of metal ion complexes formed with N3-deprotonated uridine in aqueous solution. Inorganic Chemistry Communication, 2003, 6, 90-93.	1.8	26
111	Intrinsic Acidâ^'Base Properties of Purine Derivatives in Aqueous Solution and Comparison of the Acidifying Effects of Platinum(II) Coordinated to N1 or N7:Â Acidifying Effects Are Reciprocal and the Proton "Outruns―Divalent Metal Ions. Inorganic Chemistry, 2003, 42, 32-41.	1.9	71
112	Acidâ^'Base and Metal Ion Binding Properties of Guanylyl(3'→5')guanosine (GpG-) and 2'-Deoxyguanylyl(3'→5')-2'-deoxyguanosine [d(GpG)-] in Aqueous Solution. Inorganic Chemistry, 2003 3475-3482.	3, 42 ,	53
113	Synthesis and acid–base properties of (1H-benzimidazol-2-yl-methyl)phosphonate (Bimp2â^'). Evidence for intramolecular hydrogen-bond formation in aqueous solution between (N-1)H and the phosphonate group. Organic and Biomolecular Chemistry, 2003, 1, 1819-1826. Comparison of the acida€ base properties of purine derivatives in aqueous solution. Determination of	1.5	19
114	intrinsic proton affinities of various basic sites Electronic supplementary information (ESI) available:		

#	Article	IF	CITATIONS
127	Evaluation of intramolecular equilibria in complexes formed between substituted imidazole ligands and nickel(II), copper(II) or zinc(II). Journal of Inorganic Biochemistry, 2000, 78, 129-137.	1.5	33
128	Quantification of isomeric equilibria for metal ion complexes formed in solution by phosphate or phosphonate ligands with a weakly coordinating second site. Coordination Chemistry Reviews, 2000, 200-202, 563-594.	9.5	63
129	Intramolecular stacking interactions in mixed ligand complexes formed by copper(II), 2,2â€2-bipyridine or 1,10-phenanthroline, and monoprotonated or deprotonated adenosine 5â€2-diphosphate (ADP3â^'). Evaluation of isomeric equilibria. Inorganica Chimica Acta, 2000, 300-302, 487-498.	1.2	27
130	Ternary Copper(II) Complexes in Solution[1,2] Formed With 8-Aza Derivatives of the Antiviral Nucleotide Analogue 9-[2-(Phosphonomethoxy)Ethyl]Adenine (PMEA). Metal-Based Drugs, 2000, 7, 313-324.	3.8	14
131	Properties of the Ternary (Dien)Pt(PMEA-N7) Complex Containing Diethylenetriamine (Dien) and the Antiviral 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA). Synthesis, Biological Screening, Acid-Base Behaviour, and Metal Ion-Binding in Aqueous Solution. Zeitschrift Fur Naturforschung - Section B Iournal of Chemical Sciences. 2000. 55. 1141-1152.	0.3	5
132	Intramolecular chelate formation involving the carbonyl oxygen of acetyl phosphate or acetonylphosphonate in mixed ligand copper(II) complexes containing also 2,2â€ ² -bipyridine or 1,10-phenanthroline. A decreased solvent polarity favours the metal ion–carbonyl oxygen recognition â€. Dalton Transactions RSC, 2000, , 899-904.	2.3	15
133	Metal ion-binding properties of 9-(4-phosphonobutyl)adenine (dPMEA), a sister compound of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA), and quantification of the equilibria involving four Cu(PMEA) isomers. Dalton Transactions RSC, 2000, , 2077-2084.	2.3	30
134	Isomeric Equilibria in Aqueous Solution Involving Aromatic Ring Stacking in the Sexternary Complexes Formed by the Quaternarycis-(NH3)2Pt(2â€~deoxyguanosine-N7)(dGMP-N7) Complex and the Binary Cu(2,2â€~-bipyridine)2+or Cu(1,10-phenanthroline)2+Complexes (dGMP2-= 2â€~-Deoxyguanosine) Tj ETQq0 0 0 1	rgBT /Over	lock 10 Tf 50
135	Lead(II)-Binding Properties of the 5â€~-Monophosphates of Adenosine (AMP2-), Inosine (IMP2-), and Guanosine (GMP2-) in Aqueous Solution. Evidence for Nucleobaseâ^'Lead(II) Interactions. Inorganic Chemistry, 2000, 39, 5985-5993.	1.9	45
136	Metal Ion-Binding Properties of the Diphosphate Ester Analogue, Methylphosphonylphosphate, in Aqueous Solution. Metal-Based Drugs, 1999, 6, 321-328.	3.8	6
137	Metal Ion-Binding Properties of the Nucleotide Analogue 1-[2-(Phosphonomethoxy)ethyl]cytosine (PMEC) in Aqueous Solution. Collection of Czechoslovak Chemical Communications, 1999, 64, 613-632.	1.0	26
138	On the Metal-Ion-Coordinating Properties of the Benzimidazolate Residue in Aqueous Solution – Extent of Acidification of Benzimidazole-(N3)H Sites by (N1)-Coordinated Divalent Metal Ions. European Journal of Inorganic Chemistry, 1999, 1999, 1781-1786.	1.0	8
139	Acid-Base and Metal-Ion-Coordinating Properties of Benzimidazole and Derivatives (=) Tj ETQq1 1 0.784314 rgBT Chemistry - A European Journal, 1999, 5, 1794-1802.	/Overlock 1.7	10 Tf 50 260 67
140	Effects of (N7)-Coordinated Nickel(II), Copper(II), or Platinum(II) on the Acid-Base Properties of Guanine Derivatives and Other Related Purines[â‰]. Chemistry - A European Journal, 1999, 5, 2374-2387.	1.7	116
141	Extent of intramolecular stacking interactions in the mixed-ligand complexes formed in aqueous solution by copper(II), 2,2′-bipyridine or 1,10-phenanthroline and 2′-deoxyguanosine 5′-monophosphateá Journal of the Chemical Society Dalton Transactions, 1999, , 357-366.	쀊â€.	34
142	Aspects of the co-ordination chemistry of the antiviral nucleotide analogue, 9-[2-(phosphonomethoxy)ethyl]-2,6-diaminopurine (PMEDAP). Journal of the Chemical Society Dalton Transactions, 1999, , 3661-3671.	1.1	30
143	Why is the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine in its diphosphorylated form (PMEApp4â'') initially a better substrate for polymerases than $(2\hat{a}\in^2-\text{deoxy})$ adenosine $5\hat{a}\in^2-\text{triphosphate}$ (dATP4â''/ATP4â'')? Considerations on the mechanism of nucleic acid polymerases. Chemical Communications, 1999. 743-744.	2.2	22
144	Acidâ [^] Base and Metal Ion-Coordinating Properties of Pyrimidine-Nucleoside 5â€ ⁻ -Diphosphates (CDP, UDP,) Tj ET Stability and Diphosphate Basicity. Inorganic Chemistry, 1999, 38, 439-448.	Qq0 0 0 rg 1.9	BT /Overlock 63

Stability and Diphosphate Basicity. Inorganic Chemistry, 1999, 38, 439-448.

#	Article	IF	CITATIONS
145	Stability and Structure of Metal Ion Complexes Formed in Solution with Acetyl Phosphate and Acetonylphosphonate:Â Quantification of Isomeric Equilibria. Journal of the American Chemical Society, 1999, 121, 6248-6257.	6.6	59
146	Stability of binary and ternary copper(II) complexes of the diphosphate analogue, methylphosphonylphosphate, in aqueous solution. Inorganica Chimica Acta, 1998, 273, 101-105.	1.2	18
147	Metal ion-coordinating properties of imidazole and derivatives in aqueous solution: interrelation between complex stability and ligand basicity. Inorganica Chimica Acta, 1998, 280, 50-56.	1.2	66
148	Ternary complexes in solution. Intramolecular stacking interactions in mixed ligand complexes formed by copper(II), 2,2′-bipyridyl or 1,10-phenanthroline and a pyrimidine-nucleoside 5′-diphosphate (CDP3â~', UDP3â~', dTDP3â~'). Inorganica Chimica Acta, 1998, 283, 193-201.	1.2	23
149	Acid-Base and Metal-Ion-Binding Properties of the Quaternary [cis-(NH3)2Pt(dGuo)(dGMP)] Complex Formed Betweencis-Diammineplatinum(II), 2â€2-Deoxyguanosine (dGuo), and 2â€2-Deoxyguanosine 5â€2-Monophosphate (dGMP2â^) in Aqueous Solution. Chemistry - A European Journal, 1998, 4, 1053-1060.	1.7	34
150	Facilitation of the copper(II)-promoted dephosphorylation of adenosine 5′-triphosphate (ATP4â^') by the antiviral nucleotide analogue, 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA)‡. Chemical Communications, 1998, , 1219-1220.	2.2	6
151	Quantification of Outer-Sphere Macrochelate Formation in the Ternarycis-Diammineâ^'Platinum(II)â^'Bis-2†~deoxyguanosine 5†~Monophosphate Complex,cis-(NH3)2Pt(dGMP)22-, and Formation of Quaternary Mixed Metal Ion Species with Magnesium(II), Copper(II), or Zinc(II) in Aqueous Solution, Inorganic Chemistry, 1998, 37, 4857-4864.	1.9	15
152	Metal Ion-Coordinating Properties of 2†-Deoxyguanosine 5†-Monophosphate (dGMP2-)1in Aqueous Solution. Quantification of Macrochelate Formation. Inorganic Chemistry, 1998, 37, 2066-2069.	1.9	24
153	Metal Ion-Binding Properties in Aqueous Solution of the Nucleoside Analogue, 5,6-Dichloro-1-(β-á´ribofuranosyl)benzimidazole (DRB). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1998, 53, 903-908.	0.3	4
154	Solution properties of antiviral adenine-nucleotide analogues. The acid–base properties of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) †and of its N1, N3 and N7 deaza derivatives in aqueous solution. Journal of the Chemical Society Perkin Transactions II, 1997, , 2353-2364.	0.9	36
155	Stabilities and Structures of Metal Ion Complexes of Adenosine 5â€~-O-Thiomonophosphate (AMPS2-) in Comparison with Those of Its Parent Nucleotide (AMP2-) in Aqueous Solution. Journal of the American Chemical Society, 1997, 119, 744-755.	6.6	116
156	Extent of Intramolecular Aromatic-Ring Stacking in Ternary Cu2+Complexes Formed by 2,2â€~-Bipyridyl or 1,10-Phenanthroline and Flavin Mononucleotide (FMN2-)1,2. Inorganic Chemistry, 1997, 36, 1619-1624.	1.9	23
157	The self-association of flavin mononucleotide (FMN2â^') as determined by 1H NMR shift measurements. Biophysical Chemistry, 1997, 67, 27-34.	1.5	27
158	Acidâ€Base Properties of Adenosine 5′â€Oâ€Thiomonophosphate in Aqueous Solution. Chemistry - A European Journal, 1997, 3, 29-33.	¹ 1.7	40
159	Complex Formation of the Antiviral 9â€{2â€(Phosphonomethoxy)Ethyl]Adenine (PMEA) and of Its N 1, N 3, and N 7 Deaza Derivatives with Copper(II) in Aqueous Solution. Chemistry - A European Journal, 1997, 3, 1526-1536.	1.7	53
160	The N3 Position of N9â€Substituted Adenine as a Metal Ion Binding Site: Structural and Solution Studies with Pd ^{II} and Pt ^{II} Complexes of N6′, N6′,N 9â€Trimethyladenine. Chemistry - A European Journal, 1997, 3, 388-398.	1.7	72
161	Extent of the Acidification by N7-Coordinated cis-Diammine-Platinum(II) on the Acidic Sites of Guanine Derivatives. Metal-Based Drugs, 1996, 3, 131-141.	3.8	24
162	The Assisted Self-Association of ATP4- by a Poly(Amino Acid) [Poly(Lys)] and Its Significance for Cell Organelles That Contain High Concentrations of Nucleotides. FEBS Journal, 1996, 240, 508-517.	0.2	20

#	Article	IF	CITATIONS
163	Ternary complexes in solution1 with hydrogen phosphate and methyl phosphate as ligands. Inorganica Chimica Acta, 1996, 250, 185-188.	1.2	22
164	Acid-base and metal ion-binding properties of flavin mononucleotide (FMN2â^'). Is a â€~dielectric' effect responsible for the increased complex stability?. Inorganica Chimica Acta, 1995, 240, 313-322.	1.2	21
165	Acid-base and metal ion-binding properties of 2′-deoxycytidine 5′-monophosphate (dCMP2â``) alone and coordinated to cis-diammine-platinum(II). Formation of mixed metal ion nucleotide complexes. Inorganica Chimica Acta, 1995, 235, 99-109.	1.2	30
166	Intramolecular equilibria in metal ion complexes of artificial nucleotide analogues with antiviral properties. A case study. Coordination Chemistry Reviews, 1995, 144, 287-319.	9.5	71
167	Unusual hydrogen bonding patterns of N7metallated, N1deprotonated guanine nucleobases: acidity constants of cis-[Pt(NH3)2(Hegua)2]2+and crystal structures of cis-[Pt(NH3)2(egua)2]·4H2O and cis-[Pt(NH3)2(egua)2]· Hegua·7H2O (Hegua = 9-ethylguanine). Journal of the Chemical Society Dalton Transactions, 1995, , 3767-3775.	1.1	53
168	Metal-Ion-Coordinating Properties of a Viral Inhibitor, a pyrophosphate analogue, and a herbicide metabolite, a glycinate analogue: The solution properties of the potentially five-membered chelates derived from phosphonoformic acid and (aminomethyl)phosphonic acid. Helvetica Chimica Acta, 1994, 77, 1738-1756.	1.0	34
169	Comparison of the Extent of Macrochelate Formation in Complexes of Divalent Metal Ions with Guanosine (GMP2-), Inosine (IMP2-), and Adenosine 5'-Monophosphate (AMP2-). The Crucial Role of N-7 Basicity in Metal Ion-Nucleic Base Recognition. Journal of the American Chemical Society, 1994, 116, 2958-2971.	6.6	291
170	The colourless †chameleon' or the peculiar properties of Zn2+in complexes in solution. Quantification of equilibria involving a change of the coordination number of the metal ion. Chemical Society Reviews, 1994, 23, 83-91.	18.7	98
171	Stability of ternary metal ion complexes formed by imidazole and the anion of N, N-bis(2-hydroxyethyl)glycine (Bicine). Observation of a relatively high stability of the Zn(Bicinate) (imidazole)+ complex. Inorganica Chimica Acta, 1993, 206, 215-220.	1.2	20
172	Quantification of successive intramolecular equilibria in binary metal ion complexes of N,N-bis(2-hydroxyethyl)glycinate (Bicinate). A case study. Coordination Chemistry Reviews, 1993, 122, 227-242.	9.5	26
173	Ternary complexes in solution (part 551) with phosphonates as ligands. Various intramolecular equilibria in mixed-ligand complexes containing the antiviral 9-(2-phosphonomethoxyethyl)adenine, an adenosine monophosphate analogue. Journal of the Chemical Society Dalton Transactions, 1993, , 1537-1546.	1.1	28
174	Interactions of metal ions with nucleotides and nucleic acids and their constituents. Chemical Society Reviews, 1993, 22, 255.	18.7	361
175	Solvent-dependent metal ion-adenine recognition. Quantification of the intramolecular equilibria between various isomers of the copper(2+) complexes formed in water-dioxane mixtures with the anions of the antiviral 9-(2-(phosphonomethoxy)ethyl)adenine (PMEA), an adenosine monophosphate (AMP) analog. Inorganic Chemistry. 1993. 32. 5377-5384.	1.9	17
176	Ternary Complexes in Solution ⁺ with Phosphonates as Ligands. Intramolecular Equilibria in the Mixed Ligand Cu ²⁺ Complexes Formed by 2,2â€ ² -Bipyridyl or 1,10-Phenanthroline and the Dianion of Phosphonylmethoxyethane in Water-Dioxane Mixtures. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1993, 48, 1279-1287.	0.3	18
177	On the Dichotomy of Metal Ion Binding in Adenosine Complexes. Comments on Inorganic Chemistry, 1992, 13, 35-59.	3.0	54
178	Metal ion binding properties of dihydroxyacetone phosphate and glycerol 1-phosphate. Journal of the American Chemical Society, 1992, 114, 7780-7785.	6.6	30
179	Ambivalent metal ion binding properties of cytidine in aqueous solution. Inorganic Chemistry, 1992, 31, 5588-5596.	1.9	39
180	Have adenosine 5′-triphosphate ATP4â^' and related purine-nucleotides played a role in early evolution? ATP, its own â€~enzyme' in metal ion facilitated hydrolysis!. Inorganica Chimica Acta, 1992, 198-200, 1-11.	1.2	55

#	Article	IF	CITATIONS
181	Metal-ion-coordinating properties of various phosphonate derivatives, including 9â^ [2â^'(phosphonylmethoxy)ethyl]adenine (PMEA) - an adenosine monophosphate (AMP) analogue with antiviral properties. Helvetica Chimica Acta, 1992, 75, 2634-2656.	1.0	90
182	Stability of some metal-ion complexes of tubercidin (= 7-deazaadenosine) in aqueous solution. An o-amino group inhibits complexation at N1of purines!. Journal of the Chemical Society Dalton Transactions, 1991, , 1367-1375.	1.1	17
183	Stability and structure of the Mg2+, Ca2+ and Cu2+ complexes of orotidinate 5′-monophosphate (OMP)3â^' in various aqueous 1,4-dioxane mixtures. Inorganica Chimica Acta, 1991, 187, 227-237.	1.2	9
184	Acid-base properties of nucleosides and nucleotides as a function of concentration. Comparison of the proton affinity of the nucleic base residues in the monomeric and self-associated, oligomeric 5'-triphosphates of inosine (ITP), guanosine (GTP), and adenosine (ATP). FEBS Journal, 1991, 199, 659-669.	0.2	67
185	Comments on potentiometric pH titrations and the relationship between pH-meter reading and hydrogen ion concentration. Analytica Chimica Acta, 1991, 255, 63-72.	2.6	173
186	Stability and Structure of Binary and Ternary Metal Ion Complexes of Orotidinate 5′-Monophosphate (OMP3-) in Aqueous Solution. Journal of Coordination Chemistry, 1991, 23, 137-154.	0.8	64
187	Metal-ion-governed molecular recognition: extent of intramolecular stack formation in mixed-ligand-copper(II) complexes containing a heteroaromatic N base and an adenosine monophosphate (2'AMP, 3'AMP, or 5'AMP). A structuring effect of the metal-ion bridge. FEBS Journal, 1990. 187. 387-393.	0.2	49
188	Comparison of the self-association properties of the 5'-triphosphates of inosine (ITP), guanosine (GTP), and adenosine (ATP). Further evidence for ionic interactions in the highly stable dimeric [H2(ATP)]4-2 stack. FEBS Journal, 1990, 191, 721-735.	0.2	36
189	Mechanistic aspects of the metal ion promoted hydrolysis of nucleoside 5'-triphosphates (NTPs). Coordination Chemistry Reviews, 1990, 100, 453-539.	9.5	118
190	On the metal ion binding properties of orotidine. Inorganica Chimica Acta, 1990, 178, 249-259.	1.2	31
191	Synergism between different metal ions in the dephosphorylation of adenosine 5â€ ² -triphosphate (ATP) in mixed metal ion/ATP systems, and influence of a decreasing solvent polarity (dioxane-water mixtures) on the dephosphorylation rate. Effects of Mg2+, Na+, and NH4+ ions. Journal of Inorganic Biochemistry, 1990, 40, 163-179.	1.5	23
192	The Imidazole Group and Its Stacking Properties in Mixed Ligand Metal Ion Complexes. Comments on Inorganic Chemistry, 1990, 9, 305-330.	3.0	46
193	Solvent dependent metal ion-nucleic base recognition. Extent of macrochelate formation in the binary copper(II) complexes of adenosine 5'-monophosphate (AMP) and adenosine 5'-triphosphate (ATP) in water-dioxane mixtures. Inorganic Chemistry, 1990, 29, 3631-3632.	1.9	25
194	Influence of Decreasing Solvent Polarity (Dioxane-Water Mixtures) on the Stability of Metal Ion Complexes Formed with Phosphate Monoesters. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1989, 44, 538-542.	0.3	16
195	Metal—Nucleotide Interactions. ACS Symposium Series, 1989, , 159-204.	0.5	37
196	Self-association of nucleotides. Biological Trace Element Research, 1989, 21, 49-59.	1.9	53
197	Evaluation of the metal-ion-coordinating differences between the 2'-, 3'- and 5'-monophosphates of adenosine. FEBS Journal, 1989, 179, 451-458.	0.2	52
198	Ternary complexes in solution. Part 51. Intramolecular hydrophobic and stacking interactions in mixed ligand complexes containing Cu(II), 2,2â€ ² -bipyridyl or 1,10-phenanthroline, and a simple phosphate monoester, D-ribose 5â€ ² -monophosphate or a nucleoside 5â€ ² -monophosphate (CMP, UMP, TMP, TuMP) with a non-coordinating base residue. Inorganica Chimica Acta, 1989, 159, 243-252.	1.2	26

#	Article	IF	CITATIONS
199	Influence of dioxane on the extent of intramolecular hydrophobic ligand-ligand interactions in the binary Cu2+ 1:2 complexes of L-leucinate, L-valinate and L-norvalinate. Inorganica Chimica Acta, 1989, 155, 273-280.	1.2	13
200	Stability and structure of xanthosine-metal ion complexes in aqueous solution, together with intramolecular adenosine-metal ion equilibria. Inorganic Chemistry, 1989, 28, 1480-1489.	1.9	50
201	Influence of Solvent Composition (Water—Dioxane Mixtures) on the Formation Degree of Intramolecular Aromatic-Ring Stacks in Binary Cu(L-Phenylalaninate)2, Cu(L-Tryptophanate)2, and Related Complexes. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1989, 44, 1555-1566.	0.3	8
202	Influence of the protonation degree on the self-association properties of adenosine 5'-triphosphate (ATP). FEBS Journal, 1988, 170, 617-626.	0.2	51
203	Ternary complexes in solution. 50. Dependence of intramolecular hydrophobic ligand-ligand interactions on ligand structure, geometry of the coordination sphere of the metal ion, and solvent composition. Opposing solvent effects. Inorganic Chemistry, 1988, 27, 2877-2887.	1.9	49
204	Comparison of the metal ion coordinating properties of tubercidin 5'-monophosphate (7-deaza-AMP) with those of adenosine 5'-monophosphate (AMP) and 1,N6-ethenoadenosine 5'-monophosphate (.epsilonAMP). Definite evidence for metal ion-base-backbinding to N-7 and extent of macrochelate formation in M(AMP) and M(.epsilonAMP). Journal of the American Chemical Society, 1988, 110, 6857-6865.	6.6	142
205	Metal ion coordinating properties of pyrimidine-nucleoside 5'-monophosphates (CMP, UMP, TMP) and of simple phosphate monoesters, including D-ribose 5'-monophosphate. Establishment of relations between complex stability and phosphate basicity. Inorganic Chemistry, 1988, 27, 1447-1453.	1.9	202
206	Quantification of Intramolecular Ligand Equilibria in Metal-Ion Complexes. Comments on Inorganic Chemistry, 1988, 6, 285-314.	3.0	108
207	Comparison of the stabilities of monomeric metal ion complexes formed with adenosine 5'-triphosphate (ATP) and pyrimidine-nucleoside 5'-triphosphate (CTP, UTP, TTP) and evaluation of the isomeric equilibria in the complexes of ATP and CTP. Inorganic Chemistry, 1987, 26, 2149-2157.	1.9	134
208	Ternary complexes in solution. Part 49. Intramolecular equilibria in metal ion complexes of adenosine 5'-triphosphate (ATP4-): coordination of ammonia or imidazole to M(ATP)2- releases N-7 from the metal ion coordination sphere. Inorganic Chemistry, 1987, 26, 638-643.	1.9	36
209	Self-association of adenosine 5′-monophosphate (5′-AMP) as a function of pH and in comparison with adenosine, 2′-AMP and 3′-AMP. Biophysical Chemistry, 1987, 27, 119-130.	1.5	41
210	Self-association and protonation of adenosine 5'-monophosphate in comparison with its 2'- and 3'-analogues and tubercidin 5'-monophosphate (7-deaza-AMP). FEBS Journal, 1987, 163, 353-363.	0.2	155
211	Isomeric equilibria in complexes of adenosine 5'-triphosphate with divalent metal ions. Solution structures of M(ATP)2- complexes. FEBS Journal, 1987, 165, 65-72.	0.2	144
212	Hydrolysis of nucleoside phosphates. Part 10. Comparison of the metal ion facilitated hydrolysis for the 5'-triphosphates of 1,N6-ethenoadenosine (.epsilonATP), adenosine (ATP), and cytidine (CTP). Dephosphorylation of .epsilonATP proceeding with zinc(2+) and copper(2+) via structurally different species: evidence for a long-sought, monomeric, back-bound complex with copper(2+)/.epsilonATP.	1.9	24
213	Inorganic Chemistry, 1986, 25, 2628-2634. Comparison of the properties of binary and ternary metal ion complexes of 1,N6-ethenoadenosine 5'-triphosphate (.epsilonATP) and adenosine 5'-triphosphate (ATP), including macrochelate and purine-indole stack formation. Journal of the American Chemical Society, 1986, 108, 4171-4178.	6.6	20
214	Complex formation between copper(2+) and 1,N6-ethenoadenosine 5'-triphosphate (.epsilonATP). Inorganic Chemistry, 1986, 25, 1313-1315.	1.9	11
215	Self-association of 1,N6-ethenoadenosine 5'-triphosphate (e-ATP) and promotion by metal ions. FEBS Journal, 1986, 157, 147-151.	0.2	8
216	Solvent effects on intramolecular hydrophobic ligandligand interactions in binary and ternary complexes. Inorganica Chimica Acta, 1985, 100, 151-164.	1.2	34

#	Article	IF	CITATIONS
217	An estimation of the equivalent solution dielectric constant in the active-site cavity of metalloenzymes. Dependence of carboxylate - metal-ion complex stabilities on the polarity of mixed aqueous/organic solvents. FEBS Journal, 1985, 152, 187-193.	0.2	95
218	Ternary complexes of solution. 48. Influence of organic solvents on intramolecular aromatic-ring stacks in aqueous mixed-ligand metal ion complexes. Opposing solvent effects. Journal of the American Chemical Society, 1985, 107, 5137-5148.	6.6	63
219	Influence of decreasing solvent polarity (dioxane–water mixtures) on the stability and structure of binary and ternary complexes of adenosine 5′-triphosphate and uridine 5′-triphosphate. Journal of the Chemical Society Dalton Transactions, 1985, , 2291-2303.	1.1	48
220	Ternary complexes in solution. 45. Intramolecular aromatic-ring stacking interactions in dependence on the ligand structure, geometry of the coordination sphere of the metal ion, and solvent composition. Inorganic Chemistry, 1985, 24, 2067-2076.	1.9	75
221	On the metal-ion coordinating properties of the 5'-monophosphates of 1, N6-ethenoadenosine (e-AMP), adenosine and uridine. Comparison of the macrochelate formation in the complexes of e-AMP, AMP, ADP and ATP. FEBS Journal, 1984, 138, 291-299.	0.2	21
222	Stability and structure for monomeric cadmium(II) and zinc(II) complexes of the 5'-triphosphates of adenosine and cytidine in aqueous solution: isomeric equilibria in binary and ternary complexes. Inorganic Chemistry, 1984, 23, 1933-1938.	1.9	46
223	Hydrolysis of nucleoside phosphates. 8. General considerations of transphosphorylations: mechanism of the metal ion facilitated dephosphorylation of nucleoside 5'-triphosphates including promotion of ATP dephosphorylation by addition of adenosine 5'-monophosphate. Journal of the American Chemical Society, 1984, 106, 7935-7946.	6.6	99
224	Metal-Ion-Promoted Dephosphorylation of the 5' -Triphosphates of Uridine and Thymidine, and a Comparison with the Reactivity in the Corresponding Cytidine and Adenosine Nucleotide Systems. FEBS Journal, 1983, 132, 569-577.	0.2	24
225	A proton nuclear magnetic resonance study of purine and pyrimidine nucleoside 5'-diphosphates. Extent of macrochelate formation in monomeric metal ion complexes and promotion of self-stacking by metal ions. Journal of the American Chemical Society, 1983, 105, 5891-5900.	6.6	97
226	Ternary complexes in solution. 42. Metal ion promoted hydrophobic interactions between nucleotides and amino acids. Mixed-ligand adeonsine 5'-triphosphate/metal ion(II)/L-leucinate systems and related ternary complexes. Inorganic Chemistry, 1983, 22, 925-934.	1.9	113
227	Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chemical Reviews, 1982, 82, 385-426.	23.0	1,544
228	Transition metal ions and amides. Part 7. Apical interactions in copper(II) complexes. Stability and structure of the binary and ternary copper(II) complexes formed with L-alaninamide and diethylenetriamine in aqueous solution. Inorganic Chemistry, 1982, 21, 1190-1195.	1.9	67
229	Ternary complexes in solution. 41. Ternary complexes in solution as models for enzyme-metal ion-substrate complexes. Comparison of the coordination tendency of imidazole and ammonia toward the binary complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), or Cd(II) and uridine 5'-triphosphate or adenosine 5'-triphosphate. Journal of the American Chemical Society. 1982. 104. 4100-4105.	6.6	55
230	Metal ion/buffer interactions. Stability of alkali and alkaline earth ion complexes with triethanolamine (tea), 2-amino-2(hydroxymethyl)-1,3-propanediol (tris)and 2-[bis(2-hydroxyethyl)-amino] 2(hydroxymethyl)-1,3-propanediol (Bistris) in aqueous and mixed solvents. Inorganica Chimica Acta, 1982, 66, 147-155.	1.2	54
231	Macrochelate formation in monomeric metal ion complexes of nucleoside 5'-triphosphates and the promotion of stacking by metal ions. Comparison of the self-association of purine and pyrimidine 5'-triphosphates using proton nuclear magnetic resonance. Journal of the American Chemical Society, 1981, 103, 247-260.	6.6	214
232	Enhanced stability of ternary complexes in solution through the participation of heteroaromatic N bases. Comparison of the coordination tendency of pyridine, imidazole, ammonia, acetate, and hydrogen phosphate toward metal ion nitrilotriacetate complexes. Inorganic Chemistry, 1981, 20, 2586-2590.	1.9	98
233	Binary and ternary complexes of metal ions, nucleoside 5′-monophosphates, and amino acids. Journal of Inorganic and Nuclear Chemistry, 1980, 42, 785-792.	0.5	32
234	Ternary complexes in solution. 35. Intramolecular hydrophobic ligand-ligand interactions in mixed ligand complexes containing an aliphatic amino acid. Journal of the American Chemical Society, 1980, 102, 2998-3008.	6.6	191

#	Article	IF	CITATIONS
235	Ternary complexes in solution. 34. Discriminating and stability increasing properties of the imidazole moiety in mixed-ligand complexes. Inorganic Chemistry, 1980, 19, 1411-1413.	1.9	88
236	Metal Ion/Buffer Interactions. FEBS Journal, 1980, 107, 455-466.	0.2	66
237	Ternary Complexes in Solution, XXX Increased Stability Through Intramolecular Stacking in Mixed-Ligand Cu 2+ and Zn 2+ Complexes of 2,2′ -Bipyridyl and Carboxymethyl Aryl Derivatives. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1979, 34, 208-216.	0.3	11
238	Metal Ion/Buffer Interactions. Stability of Binary and Ternary Complexes Containing 2-Amino-2(hydroxymethyl)-1,3-propanediol (Tris) and Adenosine 5'-Triphosphate (ATP). FEBS Journal, 1979, 94, 523-530.	0.2	138
239	Ternary complexes in solution. 31. Effect of the varying .piaccepting properties of several bipyridyl-like ligands on the stability of mixed-ligand complexes also containing pyrocatecholate and cobalt(II), nickel(II), copper(II), or zinc(II). Inorganic Chemistry, 1979, 18, 425-428.	1.9	51
240	A Proton Nuclear-Magnetic-Resonance Study of Self-Stacking in Purine and Pyrimidine Nucleosides and Nucleotides. FEBS Journal, 1978, 88, 149-154.	0.2	86
241	Ternary complexes in solution. 28. Enhanced stability of ternary metal ion/adenosine 5'-triphosphate complexes. Cooperative effects caused by stacking interactions in complexes containing adenosine triphosphate, phenanthroline, and magnesium, calcium, or zinc ions. Journal of the American Chemical Society. 1978, 100, 1564-1570.	6.6	99
242	Ternary complexes in solution. 26. Stacking interactions in the mixed-ligand complexes formed by adenosine or inosine 5'-triphosphate, 2,2'-bipyridyl, and cobalt(II), nickel(II), copper(II), or zinc(II). Evidence for phosphate-protonated complexes. Journal of the American Chemical Society, 1977, 99, 3142-3150.	6.6	69
243	Ternary complexes in solution. 27. Biological implications from the stability of ternary complexes in solution. Mixed-ligand complexes with manganese(II) and other 3d ions. Journal of the American Chemical Society, 1977, 99, 4489-4496.	6.6	136
244	Comparison of the stabilities of binary and ternary complexes of divalent metal ions with the 5′-triphosphates of adenosine, inosine, guanosine, cytidine, uridine and thymidine. Journal of Inorganic and Nuclear Chemistry, 1977, 39, 1903-1911.	0.5	52
245	Hydrolysis of nucleoside phosphates. 6. The mechanism of the metal ion promoted dephosphorylation of purine nucleoside 5'-triphosphates. Journal of the American Chemical Society, 1976, 98, 7390-7400.	6.6	70
246	Ternary complexes in solution. XXIV. Metal ion bridging of stacked purine-indole adducts. The mixed-ligand complexes of adenosine 5'-triphosphate, tryptophan, and manganese(II), copper(II), or zinc(II). Journal of the American Chemical Society, 1976, 98, 730-739.	6.6	100
247	Comparison of the Metal-Ion-Promoted Dephosphorylation of the 5'-Triphosphates of Adenosine, Inosine, Guanosine and Cytidine by Mn2+, Ni2+ and Zn2+ in Binary and Ternary Complexes. FEBS Journal, 1976, 63, 569-581.	0.2	43
248	Ternary Cu2+ Complexes: Stability, Structure, and Reactivity. Angewandte Chemie International Edition in English, 1975, 14, 394-402.	4.4	320
249	Nucleic base-metal ion interactions. Acidity of the N(1) or N(3) proton in binary and ternary complexes of manganese(2+), nickel(2+), and zinc(2+) ions with the 5'-triphosphates of inosine, guanosine, uridine, and thymidine. Journal of the American Chemical Society, 1975, 97, 3209-3214.	6.6	76
250	The Dephosphorylation of Adenosine 5′ -Triphosphate in a Binary and Ternary Zn ²⁺ Complex. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1974, 29, 680-682.	0.6	6
251	Adenosine and Inosine 5'-triphosphates. Protonation, Metal-Ion Coordination, and Charge-Tranfer Interaction between Two Ligands within Ternary Complexes. FEBS Journal, 1974, 41, 209-216.	0.2	60
252	A Comparison on the Coordination Tendency towards Cu2+ of the Base Moieties in Guanosine, Inosine and Adenosine 5'-Triphosphates. FEBS Journal, 1974, 46, 589-593.	0.2	15

Helmut Sigel

#	Article	IF	CITATIONS
253	Ternary complexes in solution. XVIII. Stability enhancement of nucleotide-containing charge-transfer adducts through the formation of a metal ion bridge. Journal of the American Chemical Society, 1974, 96, 2750-2756.	6.6	90
254	Ternary complexes in solution. Bridging of the stacked adduct between tryptophan and adenosine 5′-triphosphate by zinc(II). FEBS Letters, 1974, 47, 122-124.	1.3	24
255	METAL IONS AND HYDROGEN PEROXIDE XXIX. On the Kinetics and Mechanism of the Catalase-like Activity of Nickel(II) and Nickel(II)-Amine Complexes. Journal of Coordination Chemistry, 1974, 3, 235-247.	0.8	14
256	Ternary Complexes in Solution, XX. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1974, 29, 654-657.	0.3	2
257	Metal Ions and Hydrogen Peroxide. XXV. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1972, 27, 95-100.	0.3	7
258	Ternary Complexes in Solution, XII. Models for Biological Mixed-Ligand Complexes: 2,2′-Bipyridyl-Cu ²⁺ -Oligoglycine Systems. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1972, 27, 353-364.	0.3	53
259	The Stability Increasing Effect of the Pyridyl and Imidazole Groups on the Formation of Mixed Amine-Copper(II)-Adenosine 5′-monophosphate Complexes 1, 2. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1972, 27, 1319-1323.	0.3	11
260	Protection of Adenosine 5?-Triphosphate toward Hydrolysis by the Formation of a Mixed-Ligand Metal Ion Complex. Angewandte Chemie International Edition in English, 1972, 11, 1025-1025.	4.4	4
261	Acidity Constants of the Thienyl- and Phenyl-Pyridines and Stability Constants of the Corresponding Copper (II) 1:1 Complexes. Helvetica Chimica Acta, 1972, 55, 610-613.	1.0	18
262	Ternary complexes in solution. IX. Stability-increasing effect of the pyridyl and imidazole groups on the formation of mixed-ligand-copper(II)-pyrocatecholate complexes. Inorganic Chemistry, 1971, 10, 945-947.	1.9	68
263	Structure of the copper(II)-L-histidine 1:2 complex in solution. Journal of the American Chemical Society, 1971, 93, 2041-2044.	6.6	73
264	Discriminating behavior of metal ions and ligands with regard to their biological significance. Accounts of Chemical Research, 1970, 3, 201-208.	7.6	288
265	Ternary complexes in solution. VIII. Complex formation between the copper(II)-2,2'-bipyridyl 1:1 complex and ligands containing oxygen and/or nitrogen donor atoms. Inorganic Chemistry, 1970, 9, 1238-1243.	1.9	202
266	Metal ions and hydrogen peroxide. XX. On the kinetics and mechanism of the decomposition of hydrogen peroxide, catalyzed by the Cu2+-2,2'-bipyridyl complex. Journal of the American Chemical Society, 1969, 91, 1061-1064.	6.6	79
267	Metal ion complexes with biotin and biotin derivatives. Participation of sulfur in the orientation of divalent cations. Biochemistry, 1969, 8, 2687-2695.	1.2	58