List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2440165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chemical Reviews, 1982, 82, 385-426.	23.0	1,544
2	Interactions of metal ions with nucleotides and nucleic acids and their constituents. Chemical Society Reviews, 1993, 22, 255.	18.7	361
3	Ternary Cu2+ Complexes: Stability, Structure, and Reactivity. Angewandte Chemie International Edition in English, 1975, 14, 394-402.	4.4	320
4	Comparison of the Extent of Macrochelate Formation in Complexes of Divalent Metal Ions with Guanosine (GMP2-), Inosine (IMP2-), and Adenosine 5'-Monophosphate (AMP2-). The Crucial Role of N-7 Basicity in Metal Ion-Nucleic Base Recognition. Journal of the American Chemical Society, 1994, 116, 2958-2971.	6.6	291
5	Discriminating behavior of metal ions and ligands with regard to their biological significance. Accounts of Chemical Research, 1970, 3, 201-208.	7.6	288
6	Nucleoside 5′-triphosphates: self-association, acid–base, and metal ion-binding properties in solution. Chemical Society Reviews, 2005, 34, 875.	18.7	217
7	Macrochelate formation in monomeric metal ion complexes of nucleoside 5'-triphosphates and the promotion of stacking by metal ions. Comparison of the self-association of purine and pyrimidine 5'-triphosphates using proton nuclear magnetic resonance. Journal of the American Chemical Society, 1981, 103, 247-260.	6.6	214
8	A Stability Concept for Metal Ion Coordination to Single-Stranded Nucleic Acids and Affinities of Individual Sites. Accounts of Chemical Research, 2010, 43, 974-984.	7.6	206
9	Ternary complexes in solution. VIII. Complex formation between the copper(II)-2,2'-bipyridyl 1:1 complex and ligands containing oxygen and/or nitrogen donor atoms. Inorganic Chemistry, 1970, 9, 1238-1243.	1.9	202
10	Metal ion coordinating properties of pyrimidine-nucleoside 5'-monophosphates (CMP, UMP, TMP) and of simple phosphate monoesters, including D-ribose 5'-monophosphate. Establishment of relations between complex stability and phosphate basicity. Inorganic Chemistry, 1988, 27, 1447-1453.	1.9	202
11	Ternary complexes in solution. 35. Intramolecular hydrophobic ligand-ligand interactions in mixed ligand complexes containing an aliphatic amino acid. Journal of the American Chemical Society, 1980, 102, 2998-3008.	6.6	191
12	Comments on potentiometric pH titrations and the relationship between pH-meter reading and hydrogen ion concentration. Analytica Chimica Acta, 1991, 255, 63-72.	2.6	173
13	Self-association and protonation of adenosine 5'-monophosphate in comparison with its 2'- and 3'-analogues and tubercidin 5'-monophosphate (7-deaza-AMP). FEBS Journal, 1987, 163, 353-363.	0.2	155
14	Isomeric equilibria in complexes of adenosine 5'-triphosphate with divalent metal ions. Solution structures of M(ATP)2- complexes. FEBS Journal, 1987, 165, 65-72.	0.2	144
15	Comparison of the metal ion coordinating properties of tubercidin 5 -monophosphate (7-deaza-AMP) with those of adenosine 5'-monophosphate (AMP) and 1,N6-ethenoadenosine 5'-monophosphate (.epsilonAMP). Definite evidence for metal ion-base-backbinding to N-7 and extent of macrochelate formation in M(AMP) and M(.epsilonAMP). Journal of the American Chemical Society, 1988, 110,	6.6	142
16	Metal Ion/Buffer Interactions. Stability of Binary and Ternary Complexes Containing 2-Amino-2(hydroxymethyl)-1,3-propanediol (Tris) and Adenosine 5'-Triphosphate (ATP). FEBS Journal, 1979, 94, 523-530.	0.2	138
17	Ternary complexes in solution. 27. Biological implications from the stability of ternary complexes in solution. Mixed-ligand complexes with manganese(II) and other 3d ions. Journal of the American Chemical Society, 1977, 99, 4489-4496.	6.6	136
18	Comparison of the stabilities of monomeric metal ion complexes formed with adenosine 5'-triphosphate (ATP) and pyrimidine-nucleoside 5'-triphosphate (CTP, UTP, TTP) and evaluation of the isomeric equilibria in the complexes of ATP and CTP. Inorganic Chemistry, 1987, 26, 2149-2157.	1.9	134

#	Article	IF	CITATIONS
19	Mechanistic aspects of the metal ion promoted hydrolysis of nucleoside 5'-triphosphates (NTPs). Coordination Chemistry Reviews, 1990, 100, 453-539.	9.5	118
20	Stabilities and Structures of Metal Ion Complexes of Adenosine 5â€~-O-Thiomonophosphate (AMPS2-) in Comparison with Those of Its Parent Nucleotide (AMP2-) in Aqueous Solution. Journal of the American Chemical Society, 1997, 119, 744-755.	6.6	116
21	Effects of (N7)-Coordinated Nickel(II), Copper(II), or Platinum(II) on the Acid-Base Properties of Guanine Derivatives and Other Related Purines[â‰]. Chemistry - A European Journal, 1999, 5, 2374-2387.	1.7	116
22	Ternary complexes in solution. 42. Metal ion promoted hydrophobic interactions between nucleotides and amino acids. Mixed-ligand adeonsine 5'-triphosphate/metal ion(II)/L-leucinate systems and related ternary complexes. Inorganic Chemistry, 1983, 22, 925-934.	1.9	113
23	Quantification of Intramolecular Ligand Equilibria in Metal-Ion Complexes. Comments on Inorganic Chemistry, 1988, 6, 285-314.	3.0	108
24	Ternary complexes in solution. XXIV. Metal ion bridging of stacked purine-indole adducts. The mixed-ligand complexes of adenosine 5'-triphosphate, tryptophan, and manganese(II), copper(II), or zinc(II). Journal of the American Chemical Society, 1976, 98, 730-739.	6.6	100
25	Ternary complexes in solution. 28. Enhanced stability of ternary metal ion/adenosine 5'-triphosphate complexes. Cooperative effects caused by stacking interactions in complexes containing adenosine triphosphate, phenanthroline, and magnesium, calcium, or zinc ions. Journal of the American Chemical Society, 1978, 100, 1564-1570	6.6	99
26	Hydrolysis of nucleoside phosphates. 8. General considerations of transphosphorylations: mechanism of the metal ion facilitated dephosphorylation of nucleoside 5'-triphosphates including promotion of ATP dephosphorylation by addition of adenosine 5'-monophosphate. Journal of the American Chemical Society, 1984, 106, 7935-7946.	6.6	99
27	Enhanced stability of ternary complexes in solution through the participation of heteroaromatic N bases. Comparison of the coordination tendency of pyridine, imidazole, ammonia, acetate, and hydrogen phosphate toward metal ion nitrilotriacetate complexes. Inorganic Chemistry, 1981, 20, 2586-2590.	1.9	98
28	The colourless â€~chameleon' or the peculiar properties of Zn2+in complexes in solution. Quantification of equilibria involving a change of the coordination number of the metal ion. Chemical Society Reviews, 1994, 23, 83-91.	18.7	98
29	A proton nuclear magnetic resonance study of purine and pyrimidine nucleoside 5'-diphosphates. Extent of macrochelate formation in monomeric metal ion complexes and promotion of self-stacking by metal ions. Journal of the American Chemical Society, 1983, 105, 5891-5900.	6.6	97
30	An estimation of the equivalent solution dielectric constant in the active-site cavity of metalloenzymes. Dependence of carboxylate - metal-ion complex stabilities on the polarity of mixed aqueous/organic solvents. FEBS Journal, 1985, 152, 187-193.	0.2	95
31	Ternary complexes in solution. XVIII. Stability enhancement of nucleotide-containing charge-transfer adducts through the formation of a metal ion bridge. Journal of the American Chemical Society, 1974, 96, 2750-2756.	6.6	90
32	Metal-ion-coordinating properties of various phosphonate derivatives, including 9â''[2â''(phosphonylmethoxy)ethyl]adenine (PMEA) - an adenosine monophosphate (AMP) analogue with antiviral properties. Helvetica Chimica Acta, 1992, 75, 2634-2656.	1.0	90
33	Ternary complexes in solution. 34. Discriminating and stability increasing properties of the imidazole moiety in mixed-ligand complexes. Inorganic Chemistry, 1980, 19, 1411-1413.	1.9	88
34	A Proton Nuclear-Magnetic-Resonance Study of Self-Stacking in Purine and Pyrimidine Nucleosides and Nucleotides. FEBS Journal, 1978, 88, 149-154.	0.2	86
35	Stabilities and Isomeric Equilibria in Aqueous Solution of Monomeric Metal Ion Complexes of Adenosine 5′-Diphosphate (ADP3) in Comparison with Those of Adenosine 5′-Monophosphate (AMP2). Chemistry - A European Journal, 2003, 9, 881-892.	1.7	85
36	Metal ions and hydrogen peroxide. XX. On the kinetics and mechanism of the decomposition of hydrogen peroxide, catalyzed by the Cu2+-2,2'-bipyridyl complex. Journal of the American Chemical Society, 1969, 91, 1061-1064.	6.6	79

#	ARTICLE	IF	CITATIONS
	intrinsic proton affinities of various basic sites Electronic supplementary information (ESI) available:		
37			

#	Article	IF	CITATIONS
55	Metal ion-coordinating properties of imidazole and derivatives in aqueous solution: interrelation between complex stability and ligand basicity. Inorganica Chimica Acta, 1998, 280, 50-56.	1.2	66
56	Metal Ion/Buffer Interactions. FEBS Journal, 1980, 107, 455-466.	0.2	66
57	Stability and Structure of Binary and Ternary Metal Ion Complexes of Orotidinate 5′-Monophosphate (OMP3-) in Aqueous Solution. Journal of Coordination Chemistry, 1991, 23, 137-154.	0.8	64
58	Ternary complexes of solution. 48. Influence of organic solvents on intramolecular aromatic-ring stacks in aqueous mixed-ligand metal ion complexes. Opposing solvent effects. Journal of the American Chemical Society, 1985, 107, 5137-5148.	6.6	63
59	Acidâ^Base and Metal Ion-Coordinating Properties of Pyrimidine-Nucleoside 5â€~-Diphosphates (CDP, UDP,) Tj ET Stability and Diphosphate Basicity. Inorganic Chemistry, 1999, 38, 439-448.	Qq1 1 0. 1.9	.784314 rgE 63
60	Quantification of isomeric equilibria for metal ion complexes formed in solution by phosphate or phosphonate ligands with a weakly coordinating second site. Coordination Chemistry Reviews, 2000, 200-202, 563-594.	9.5	63
61	Adenosine and Inosine 5'-triphosphates. Protonation, Metal-Ion Coordination, and Charge-Tranfer Interaction between Two Ligands within Ternary Complexes. FEBS Journal, 1974, 41, 209-216.	0.2	60
62	Stability and Structure of Metal Ion Complexes Formed in Solution with Acetyl Phosphate and Acetonylphosphonate:Â Quantification of Isomeric Equilibria. Journal of the American Chemical Society, 1999, 121, 6248-6257.	6.6	59
63	Metal ion complexes with biotin and biotin derivatives. Participation of sulfur in the orientation of divalent cations. Biochemistry, 1969, 8, 2687-2695.	1.2	58
64	Ternary complexes in solution. 41. Ternary complexes in solution as models for enzyme-metal ion-substrate complexes. Comparison of the coordination tendency of imidazole and ammonia toward the binary complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), or Cd(II) and uridine 5'-triphosphate or adenosine 5'-triphosphate. Journal of the American Chemical Society, 1982, 104, 4100-4105.	6.6	55
65	Have adenosine 5′-triphosphate ATP4â^' and related purine-nucleotides played a role in early evolution? ATP, its own †̃enzyme' in metal ion facilitated hydrolysis!. Inorganica Chimica Acta, 1992, 198-200, 1-11.	1.2	55
66	Metal ion/buffer interactions. Stability of alkali and alkaline earth ion complexes with triethanolamine (tea), 2-amino-2(hydroxymethyl)-1,3-propanediol (tris)and 2-[bis(2-hydroxyethyl)-amino] 2(hydroxymethyl)-1,3-propanediol (Bistris) in aqueous and mixed solvents. Inorganica Chimica Acta, 1982, 66, 147-155.	1.2	54
67	On the Dichotomy of Metal Ion Binding in Adenosine Complexes. Comments on Inorganic Chemistry, 1992, 13, 35-59.	3.0	54
68	Ternary Complexes in Solution, XII. Models for Biological Mixed-Ligand Complexes: 2,2′-Bipyridyl-Cu ²⁺ -Oligoglycine Systems. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1972, 27, 353-364.	0.3	53
69	Self-association of nucleotides. Biological Trace Element Research, 1989, 21, 49-59.	1.9	53
70	Unusual hydrogen bonding patterns of N7metallated, N1deprotonated guanine nucleobases: acidity constants of cis-[Pt(NH3)2(Hegua)2]2+and crystal structures of cis-[Pt(NH3)2(egua)2]·4H2O and cis-[Pt(NH3)2(egua)2]· Hegua·7H2O (Hegua = 9-ethylguanine). Journal of the Chemical Society Dalton Transactions, 1995, , 3767-3775.	1.1	53
71	Complex Formation of the Antiviral 9â€{2â€{Phosphonomethoxy)Ethyl]Adenine (PMEA) and of Its N 1, N 3, and N 7 Deaza Derivatives with Copper(II) in Aqueous Solution. Chemistry - A European Journal, 1997, 3, 1526-1536.	1.7	53
72	Acidâ~'Base and Metal Ion Binding Properties of Guanylyl(3â€~→5â€~)guanosine (GpG-) and 2â€~-Deoxyguanylyl(3â€~→5â€~)-2â€~-deoxyguanosine [d(GpG)-] in Aqueous Solution. Inorganic Chemistry, 200 3475-3482.	3,142,	53

#	Article	IF	CITATIONS
73	Probing the Metal-Ion-Binding Strength of the Hydroxyl Group. Chemical Reviews, 2011, 111, 4964-5003.	23.0	53
74	Comparison of the stabilities of binary and ternary complexes of divalent metal ions with the 5′-triphosphates of adenosine, inosine, guanosine, cytidine, uridine and thymidine. Journal of Inorganic and Nuclear Chemistry, 1977, 39, 1903-1911.	0.5	52
75	Evaluation of the metal-ion-coordinating differences between the 2'-, 3'- and 5'-monophosphates of adenosine. FEBS Journal, 1989, 179, 451-458.	0.2	52
76	Stabilities and Isomeric Equilibria in Solutions of Monomeric Metal-Ion Complexes of Guanosine 5′-Triphosphate (GTP4â^') and Inosine 5′-Triphosphate (ITP4â^') in Comparison with Those of Adenosine 5′-Triphosphate (ATP4â^'). Chemistry - A European Journal, 2001, 7, 3729-3737.	1.7	52
77	Metal Ion-Binding Properties of (1H-Benzimidazol-2-yl-methyl)phosphonate (Bimp2-) in Aqueous Solution.⊥Isomeric Equilibria, Extent of Chelation, and a New Quantification Method for the Chelate Effect. Inorganic Chemistry, 2004, 43, 1311-1322.	1.9	52
78	Ternary complexes in solution. 31. Effect of the varying .piaccepting properties of several bipyridyl-like ligands on the stability of mixed-ligand complexes also containing pyrocatecholate and cobalt(II), nickel(II), copper(II), or zinc(II). Inorganic Chemistry, 1979, 18, 425-428.	1.9	51
79	Influence of the protonation degree on the self-association properties of adenosine 5'-triphosphate (ATP). FEBS Journal, 1988, 170, 617-626.	0.2	51
80	Stability and structure of xanthosine-metal ion complexes in aqueous solution, together with intramolecular adenosine-metal ion equilibria. Inorganic Chemistry, 1989, 28, 1480-1489.	1.9	50
81	Ternary complexes in solution. 50. Dependence of intramolecular hydrophobic ligand-ligand interactions on ligand structure, geometry of the coordination sphere of the metal ion, and solvent composition. Opposing solvent effects. Inorganic Chemistry, 1988, 27, 2877-2887.	1.9	49
82	Metal-ion-governed molecular recognition: extent of intramolecular stack formation in mixed-ligand-copper(II) complexes containing a heteroaromatic N base and an adenosine monophosphate (2'AMP, 3'AMP, or 5'AMP). A structuring effect of the metal-ion bridge. FEBS Journal, 1990–187–387-393	0.2	49
83	Influence of decreasing solvent polarity (dioxane–water mixtures) on the stability and structure of binary and ternary complexes of adenosine 5â€2-triphosphate and uridine 5â€2-triphosphate. Journal of the Chemical Society Dalton Transactions, 1985, , 2291-2303.	1.1	48
84	Stability and structure for monomeric cadmium(II) and zinc(II) complexes of the 5'-triphosphates of adenosine and cytidine in aqueous solution: isomeric equilibria in binary and ternary complexes. Inorganic Chemistry, 1984, 23, 1933-1938.	1.9	46
85	The Imidazole Group and Its Stacking Properties in Mixed Ligand Metal Ion Complexes. Comments on Inorganic Chemistry, 1990, 9, 305-330.	3.0	46
86	Metal Ion-Binding Properties of 1-Methyl-4-aminobenzimidazole (=9-Methyl-1,3-dideazaadenine) and 1,4-Dimethylbenzimidazole (=6,9-Dimethyl-1,3-dideazapurine). Quantification of the Steric Effect of the 6-Amino Group on Metal Ion Binding at the N7 Site of the Adenine Residue. Inorganic Chemistry, 2001, 40, 2500-2508.	1.9	46
87	Lead(II)-Binding Properties of the 5â€~-Monophosphates of Adenosine (AMP2-), Inosine (IMP2-), and Guanosine (GMP2-) in Aqueous Solution. Evidence for Nucleobaseâ~'Lead(II) Interactions. Inorganic Chemistry, 2000, 39, 5985-5993.	1.9	45
88	Comparison of the Metal-Ion-Promoted Dephosphorylation of the 5'-Triphosphates of Adenosine, Inosine, Guanosine and Cytidine by Mn2+, Ni2+ and Zn2+ in Binary and Ternary Complexes. FEBS Journal, 1976, 63, 569-581.	0.2	43
89	Perturbation of the NH2 pKa Value of Adenine in Platinum(II) Complexes: Distinct Stereochemical Internucleobase Effects. Chemistry - A European Journal, 2004, 10, 1046-1057.	1.7	43
90	Self-association of adenosine 5′-monophosphate (5′-AMP) as a function of pH and in comparison with adenosine, 2′-AMP and 3′-AMP. Biophysical Chemistry, 1987, 27, 119-130.	1.5	41

#	Article	IF	CITATIONS
91	Acidâ€Base Properties of Adenosine 5′â€Oâ€Thiomonophosphate in Aqueous Solution. Chemistry - A European Journal, 1997, 3, 29-33.	1.7	40
92	Ambivalent metal ion binding properties of cytidine in aqueous solution. Inorganic Chemistry, 1992, 31, 5588-5596.	1.9	39
93	Two Metal Ions Coordinated to a Purine Residue Tolerate Each Other Well. Angewandte Chemie - International Edition, 2004, 43, 3793-3795.	7.2	38
94	Acidâ^'Base and Metal-Ion-Binding Properties of 9-[2-(2-Phosphonoethoxy)ethyl]adenine (PEEA), a Relative of the Antiviral Nucleotide Analogue 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA). An Exercise on the Quantification of Isomeric Complex Equilibria in Solution. Inorganic Chemistry, 2005, 44, 5104-5117.	1.9	38
95	Metal—Nucleotide Interactions. ACS Symposium Series, 1989, , 159-204.	0.5	37
96	Ternary complexes in solution. Part 49. Intramolecular equilibria in metal ion complexes of adenosine 5'-triphosphate (ATP4-): coordination of ammonia or imidazole to M(ATP)2- releases N-7 from the metal ion coordination sphere. Inorganic Chemistry, 1987, 26, 638-643.	1.9	36
97	Comparison of the self-association properties of the 5'-triphosphates of inosine (ITP), guanosine (GTP), and adenosine (ATP). Further evidence for ionic interactions in the highly stable dimeric [H2(ATP)]4-2 stack. FEBS Journal, 1990, 191, 721-735.	0.2	36
98	Solution properties of antiviral adenine-nucleotide analogues. The acid–base properties of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) †and of its N1, N3 and N7 deaza derivatives in aqueous solution. Journal of the Chemical Society Perkin Transactions II, 1997, , 2353-2364.	0.9	36
99	Solvent effects on intramolecular hydrophobic ligandligand interactions in binary and ternary complexes. Inorganica Chimica Acta, 1985, 100, 151-164.	1.2	34
100	Metal-Ion-Coordinating Properties of a Viral Inhibitor, a pyrophosphate analogue, and a herbicide metabolite, a glycinate analogue: The solution properties of the potentially five-membered chelates derived from phosphonoformic acid and (aminomethyl)phosphonic acid. Helvetica Chimica Acta, 1994, 77, 1738-1756.	1.0	34
101	Acid-Base and Metal-Ion-Binding Properties of the Quaternary [cis-(NH3)2Pt(dGuo)(dGMP)] Complex Formed Betweencis-Diammineplatinum(II), 2′-Deoxyguanosine (dGuo), and 2′-Deoxyguanosine 5′-Monophosphate (dGMP2â~) in Aqueous Solution. Chemistry - A European Journal, 1998, 4, 1053-1060.	1.7	34
102	Extent of intramolecular stacking interactions in the mixed-ligand complexes formed in aqueous solution by copper(II), 2,2′-bipyridine or 1,10-phenanthroline and 2′-deoxyguanosine 5′-monophosphateâ Journal of the Chemical Society Dalton Transactions, 1999, , 357-366.	€Šâ€.	34
103	Evaluation of intramolecular equilibria in complexes formed between substituted imidazole ligands and nickel(II), copper(II) or zinc(II). Journal of Inorganic Biochemistry, 2000, 78, 129-137.	1.5	33
104	Binary and ternary complexes of metal ions, nucleoside 5′-monophosphates, and amino acids. Journal of Inorganic and Nuclear Chemistry, 1980, 42, 785-792.	0.5	32
105	On the metal ion binding properties of orotidine. Inorganica Chimica Acta, 1990, 178, 249-259.	1.2	31
106	Metal ion binding properties of dihydroxyacetone phosphate and glycerol 1-phosphate. Journal of the American Chemical Society, 1992, 114, 7780-7785.	6.6	30
107	Acid-base and metal ion-binding properties of 2′-deoxycytidine 5′-monophosphate (dCMP2â^') alone and coordinated to cis-diammine-platinum(II). Formation of mixed metal ion nucleotide complexes. Inorganica Chimica Acta, 1995, 235, 99-109.	1.2	30
108	Aspects of the co-ordination chemistry of the antiviral nucleotide analogue, 9-[2-(phosphonomethoxy)ethyl]-2,6-diaminopurine (PMEDAP). Journal of the Chemical Society Dalton Transactions, 1999, , 3661-3671.	1.1	30

#	Article	IF	CITATIONS
109	Metal ion-binding properties of 9-(4-phosphonobutyl)adenine (dPMEA), a sister compound of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA), and quantification of the equilibria involving four Cu(PMEA) isomers. Dalton Transactions RSC, 2000, , 2077-2084.	2.3	30
110	Complex Formation of Divalent Metal Ions with Uridine 5â€2-O-Thiomonophosphate or Methyl Thiophosphate: Comparison of Complex Stabilities with Those of the Parent Phosphate Ligands. ChemBioChem, 2003, 4, 593-602.	1.3	29
111	A quantitative appraisal of the ambivalent metal ion binding properties of cytidine in aqueous solution and an estimation of the anti–syn energy barrier of cytidine derivatives. Journal of Biological Inorganic Chemistry, 2004, 9, 365-373.	1.1	29
112	Acid–base properties of the nucleic-acid model 2′-deoxyguanylyl(5′→3′)-2′-deoxy-5′-guanylate, c of related guanine derivatives. Organic and Biomolecular Chemistry, 2006, 4, 1085.	d(pCpC)3	8–and 29
113	Xanthosine 5′-monophosphate (XMP). Acid–base and metal ion-binding properties of a chameleon-like nucleotide. Chemical Society Reviews, 2009, 38, 2465.	18.7	29
114	Ternary complexes in solution (part 551) with phosphonates as ligands. Various intramolecular equilibria in mixed-ligand complexes containing the antiviral 9-(2-phosphonomethoxyethyl)adenine, an adenosine monophosphate analogue. Journal of the Chemical Society Dalton Transactions, 1993, , 1537-1546.	1.1	28
115	The self-association of flavin mononucleotide (FMN2â^') as determined by 1H NMR shift measurements. Biophysical Chemistry, 1997, 67, 27-34.	1.5	27
116	Intramolecular stacking interactions in mixed ligand complexes formed by copper(II), 2,2′-bipyridine or 1,10-phenanthroline, and monoprotonated or deprotonated adenosine 5′-diphosphate (ADP3â^'). Evaluation of isomeric equilibria. Inorganica Chimica Acta, 2000, 300-302, 487-498.	1.2	27
117	Ternary complexes in solution. Part 51. Intramolecular hydrophobic and stacking interactions in mixed ligand complexes containing Cu(II), 2,2â€ ² -bipyridyl or 1,10-phenanthroline, and a simple phosphate monoester, D-ribose 5â€ ² -monophosphate or a nucleoside 5â€ ² -monophosphate (CMP, UMP, TMP, TUMP) with a non-coordinating base residue. Inorganica Chimica Acta. 1989. 159. 243-252.	1.2	26
118	Quantification of successive intramolecular equilibria in binary metal ion complexes of N,N-bis(2-hydroxyethyl)glycinate (Bicinate). A case study. Coordination Chemistry Reviews, 1993, 122, 227-242.	9.5	26
119	Metal Ion-Binding Properties of the Nucleotide Analogue 1-[2-(Phosphonomethoxy)ethyl]cytosine (PMEC) in Aqueous Solution. Collection of Czechoslovak Chemical Communications, 1999, 64, 613-632.	1.0	26
120	Stability constants of metal ion complexes formed with N3-deprotonated uridine in aqueous solution. Inorganic Chemistry Communication, 2003, 6, 90-93.	1.8	26
121	Influence of Decreasing Solvent Polarity (1,4-Dioxane/Water Mixtures) on the Acid-Base and Copper(II)-Binding Properties of Guanosine 5?-Diphosphate. Helvetica Chimica Acta, 2005, 88, 406-425.	1.0	26
122	Extent of metal ion–sulfur binding in complexes of thiouracil nucleosides and nucleotides in aqueous solution. Journal of Inorganic Biochemistry, 2007, 101, 727-735.	1.5	26
123	Solvent dependent metal ion-nucleic base recognition. Extent of macrochelate formation in the binary copper(II) complexes of adenosine 5'-monophosphate (AMP) and adenosine 5'-triphosphate (ATP) in water-dioxane mixtures. Inorganic Chemistry, 1990, 29, 3631-3632.	1.9	25
124	Ternary complexes in solution. Bridging of the stacked adduct between tryptophan and adenosine 5′-triphosphate by zinc(II). FEBS Letters, 1974, 47, 122-124.	1.3	24
125	Metal-Ion-Promoted Dephosphorylation of the 5' -Triphosphates of Uridine and Thymidine, and a Comparison with the Reactivity in the Corresponding Cytidine and Adenosine Nucleotide Systems. FEBS Journal, 1983, 132, 569-577.	0.2	24
126	Hydrolysis of nucleoside phosphates. Part 10. Comparison of the metal ion facilitated hydrolysis for the 5'-triphosphates of 1,N6-ethenoadenosine (.epsilonATP), adenosine (ATP), and cytidine (CTP). Dephosphorylation of .epsilonATP proceeding with zinc(2+) and copper(2+) via structurally different species: evidence for a long-sought, monomeric, back-bound complex with copper(2+)/.epsilonATP. Inorganic Chemistry, 1986, 25, 2628-2634.	1.9	24

#	Article	IF	CITATIONS
127	Extent of the Acidification by N7-Coordinated cis-Diammine-Platinum(II) on the Acidic Sites of Guanine Derivatives. Metal-Based Drugs, 1996, 3, 131-141.	3.8	24
128	Metal Ion-Coordinating Properties of 2â€~-Deoxyguanosine 5â€~-Monophosphate (dGMP2-)1in Aqueous Solution. Quantification of Macrochelate Formation. Inorganic Chemistry, 1998, 37, 2066-2069.	1.9	24
129	Metal-Ion-Coordinating Properties of the Dinucleotide 2′-Deoxyguanylyl(5′→3′)-2′-deoxy-5′-guanyl (d(pGpG)3â^'): Isomeric Equilibria Including Macrochelated Complexes Relevant for Nucleic Acids. Chemistry - A European Journal, 2007, 13, 1804-1814.	ate 1.7	24
130	Synergism between different metal ions in the dephosphorylation of adenosine 5â€ ² -triphosphate (ATP) in mixed metal ion/ATP systems, and influence of a decreasing solvent polarity (dioxane-water mixtures) on the dephosphorylation rate. Effects of Mg2+, Na+, and NH4+ ions. Journal of Inorganic Biochemistry, 1990, 40, 163-179.	1.5	23
131	Extent of Intramolecular Aromatic-Ring Stacking in Ternary Cu2+Complexes Formed by 2,2â€ [~] -Bipyridyl or 1,10-Phenanthroline and Flavin Mononucleotide (FMN2-)1,2. Inorganic Chemistry, 1997, 36, 1619-1624.	1.9	23
132	Ternary complexes in solution. Intramolecular stacking interactions in mixed ligand complexes formed by copper(II), 2,2′-bipyridyl or 1,10-phenanthroline and a pyrimidine-nucleoside 5′-diphosphate (CDP3â~', UDP3â~', dTDP3â~'). Inorganica Chimica Acta, 1998, 283, 193-201.	1.2	23
133	Acid–base properties of the 5′-triphosphates of guanosine and inosine (GTP4â^' and ITP4â^') and of several related nucleobase derivatives. Perkin Transactions II RSC, 2001, , 507-511.	1.1	23
134	Evidence for intramolecular aromatic-ring stacking in the physiological pH range of the monodeprotonated xanthine residue in mixed-ligand complexes containing xanthosinate 5′-monophosphate (XMP). Dalton Transactions, 2006, , 5521-5529.	1.6	23
135	Stability and Structure of Mixedâ€Ligand Metal Ion Complexes That Contain Ni 2+ , Cu 2+ , or Zn 2+ , and Histamine, as well as Adenosine 5′â€Triphosphate (ATP 4â^') or Uridine 5′â€Triphosphate (UTP 4â°'): An Int Network of Equilibria. Chemistry - A European Journal, 2011, 17, 5393-5403.	ri ca te	23
136	Ternary complexes in solution1 with hydrogen phosphate and methyl phosphate as ligands. Inorganica Chimica Acta, 1996, 250, 185-188.	1.2	22
137	Why is the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine in its diphosphorylated form (PMEApp4 \hat{a}°) initially a better substrate for polymerases than ($2\hat{a}\in^2$ -deoxy)adenosine $5\hat{a}\in^2$ -triphosphate (dATP4 \hat{a}° /ATP4 \hat{a}°)? Considerations on the mechanism of nucleic acid polymerases. Chemical Communications, 1999, , 743-744.	2.2	22
138	On the metal-ion coordinating properties of the 5'-monophosphates of 1, N6-ethenoadenosine (e-AMP), adenosine and uridine. Comparison of the macrochelate formation in the complexes of e-AMP, AMP, ADP and ATP. FEBS Journal, 1984, 138, 291-299.	0.2	21
139	Acid-base and metal ion-binding properties of flavin mononucleotide (FMN2â^'). Is a â€~dielectric' effect responsible for the increased complex stability?. Inorganica Chimica Acta, 1995, 240, 313-322.	1.2	21
140	Cytochrome P450 and Steroid Hormone Biosynthesis. , 2007, , 361-396.		21
141	Intramolecular π–π stacking interactions in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and the nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antivirally active 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Inorganica Chimica Acta, 2009, 362, 799-810.	1.2	21
142	Steric guiding of metal ion binding to a purine residue by a non-coordinating amino group: Examplified by 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA), and by related compounds. Coordination Chemistry Reviews, 2012, 256, 260-278.	9.5	21
143	Complex Formation of Cadmium with Sugar Residues, Nucleobases, Phosphates, Nucleotides, and Nucleic Acids. Metal Ions in Life Sciences, 2013, 11, 191-274.	2.8	21
144	Comparison of the properties of binary and ternary metal ion complexes of 1,N6-ethenoadenosine 5'-triphosphate (ATP), including macrochelate and purine-indole stack formation. Journal of the American Chemical Society, 1986, 108, 4171-4178.	6.6	20

#	Article	IF	CITATIONS
145	Stability of ternary metal ion complexes formed by imidazole and the anion of N, N-bis(2-hydroxyethyl)glycine (Bicine). Observation of a relatively high stability of the Zn(Bicinate) (imidazole)+ complex. Inorganica Chimica Acta, 1993, 206, 215-220.	1.2	20
146	The Assisted Self-Association of ATP4- by a Poly(Amino Acid) [Poly(Lys)] and Its Significance for Cell Organelles That Contain High Concentrations of Nucleotides. FEBS Journal, 1996, 240, 508-517.	0.2	20
147	Isomeric Equilibria in Aqueous Solution Involving Aromatic Ring Stacking in the Sexternary Complexes Formed by the Quaternarycis-(NH3)2Pt(2â€ ⁻ deoxyguanosine-N7)(dGMP-N7) Complex and the Binary Cu(2,2â€ ⁻ bipyridine)2+or Cu(1,10-phenanthroline)2+Complexes (dGMP2-= 2â€ ⁻ Deoxyguanosine) Tj ETQq1	1 0.784314	rgB ²⁰ Overloo
148	Acid–Base and Metal-Ion-Binding Properties of Xanthosine 5′-Monophosphate (XMP) in Aqueous Solution: Complex Stabilities, Isomeric Equilibria, and Extent of Macrochelation. Chemistry - A European Journal, 2006, 12, 8106-8122.	1.7	20
149	Biogeochemistry of Nickel and Its Release into the Environment. , 2007, , 1-29.		20
150	Methyl-Coenzyme M Reductase and its Nickel Corphin Coenzyme F430 in Methanogenic Archaea. , 2007, , 323-356.		20
151	Influence of decreasing solvent polarity (1,4-dioxane/water mixtures) on the stability and structure of complexes formed by copper(II), 2,2′-bipyridine or 1,10-phenanthroline and guanosine 5′-diphosphate: evaluation of isomeric equilibria. Journal of Coordination Chemistry, 2009, 62, 23-39.	0.8	20
152	Formation of Ternary Complexes by Coordination of (Diethylenetriamine)Platinum(II) to N1 or N7 of the Adenine Moiety of the Antiviral Nucleotide Analogue 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA): Comparison of the Acid-Base and Metal-Ion-Binding Properties of PMEA, (Dien)Pt(PMEA-N1), and (Dien)Pt(PMEA-N7). Chemistry - A European Journal, 2001, 7, 1899-1908.	1.7	19
153	Synthesis and acid–base properties of (1H-benzimidazol-2-yl-methyl)phosphonate (Bimp2â^'). Evidence for intramolecular hydrogen-bond formation in aqueous solution between (N-1)H and the phosphonate group. Organic and Biomolecular Chemistry, 2003, 1, 1819-1826.	1.5	19
154	Intrinsic Acid–Base Properties of a Hexaâ€2â€2â€deoxynucleoside Pentaphosphate, d(ApGpGpCpCpT): Neighboring Effects and Isomeric Equilibria. Chemistry - A European Journal, 2013, 19, 8163-8181.	1.7	19
155	Acidity Constants of the Thienyl- and Phenyl-Pyridines and Stability Constants of the Corresponding Copper (II) 1:1 Complexes. Helvetica Chimica Acta, 1972, 55, 610-613.	1.0	18
156	Ternary Complexes in Solution ⁺ with Phosphonates as Ligands. Intramolecular Equilibria in the Mixed Ligand Cu ²⁺ Complexes Formed by 2,2′-Bipyridyl or 1,10-Phenanthroline and the Dianion of Phosphonylmethoxyethane in Water-Dioxane Mixtures. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1993, 48, 1279-1287.	0.3	18
157	Stability of binary and ternary copper(II) complexes of the diphosphate analogue, methylphosphonylphosphate, in aqueous solution. Inorganica Chimica Acta, 1998, 273, 101-105.	1.2	18
158	Stabilities of lead(II) complexes formed in aqueous solution with methyl thiophosphate (MeOPS2–), uridine 5'-O-thiomonophosphate (UMPS2–) or adenosine 5'-O-thiomonophosphate (AMPS2–). Journal of Biological Inorganic Chemistry, 2002, 7, 405-415.	1.1	18
159	Intramolecular stacking interactions in ternary copper(II) complexes formed by a heteroaromatic amine and 9-[2-(2-phosphonoethoxy)ethyl]adenine, a relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adeninea~†. Journal of Inorganic Biochemistry, 2004, 98, 2114-2124.	1.5	18
160	Nickel in Acireductone Dioxygenase. , 2007, , 473-500.		18
161	Nickel in the Environment and Its Role in the Metabolism of Plants and Cyanobacteria. , 2007, , 31-62.		18
162	Stability of some metal-ion complexes of tubercidin (= 7-deazaadenosine) in aqueous solution. An o-amino group inhibits complexation at N1of purines!. Journal of the Chemical Society Dalton Transactions, 1991, , 1367-1375.	1.1	17

#	Article	IF	CITATIONS
163	Solvent-dependent metal ion-adenine recognition. Quantification of the intramolecular equilibria between various isomers of the copper(2+) complexes formed in water-dioxane mixtures with the anions of the antiviral 9-(2-(phosphonomethoxy)ethyl)adenine (PMEA), an adenosine monophosphate (AMP) analog. Inorganic Chemistry, 1993, 32, 5377-5384.	1.9	17
164	Stability and structure of binary and ternary metal ion complexes in aqueous solution of the quaternary 1-[2-(phosphonomethoxy)ethyl] derivative of 2,4-diaminopyrimidine (PMEDAPyâ^'). Properties of an acyclic nucleotide analogue. Polyhedron, 2003, 22, 1067-1076.	1.0	17
165	Acid–Base Properties of Xanthosine 5′-Monophosphate (XMP) and of Some Related Nucleobase Derivatives in Aqueous Solution: Micro Acidity Constant Evaluations of the (N1)H versus the (N3)H Deprotonation Ambiguity. Chemistry - A European Journal, 2004, 10, 5129-5137.	1.7	17
166	Metal ion-binding properties of 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA). Steric guiding of metal ion-coordination by the purine-amino group. Dalton Transactions, 2010, 39, 6344.	1.6	17
167	Comparison of the π-stacking properties of purine versus pyrimidine residues. Some generalizations regarding selectivity. Journal of Biological Inorganic Chemistry, 2014, 19, 691-703.	1.1	17
168	Influence of Decreasing Solvent Polarity (Dioxane-Water Mixtures) on the Stability of Metal Ion Complexes Formed with Phosphate Monoesters. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1989, 44, 538-542.	0.3	16
169	A Comparison on the Coordination Tendency towards Cu2+ of the Base Moieties in Guanosine, Inosine and Adenosine 5'-Triphosphates. FEBS Journal, 1974, 46, 589-593.	0.2	15
170	Quantification of Outer-Sphere Macrochelate Formation in the Ternarycis-Diammineâ [^] Platinum(II)â [^] Bis-2â€ [~] -deoxyguanosine 5â€ [~] -Monophosphate Complex,cis-(NH3)2Pt(dGMP)22-, and Formation of Quaternary Mixed Metal Ion Species with Magnesium(II), Copper(II), or Zinc(II) in Aqueous Solution. Inorganic Chemistry, 1998, 37, 4857-4864.	1.9	15
171	acetonylphosphonate in mixed ligand copper(II) complexes containing also 2,2â€ ² -bipyridine or 1,10-phenanthroline. A decreased solvent polarity favours the metal ion–carbonyl oxygen recognition â€. Dalton Transactions RSC. 2000 899-904.	2.3	15
172	Metal-ion binding properties of O-phosphonatomethylcholine (PMChâ^') Inorganica Chimica Acta, 2002, 331, 109-116.	1.2	15
173	METAL IONS AND HYDROGEN PEROXIDE XXIX. On the Kinetics and Mechanism of the Catalase-like Activity of Nickel(II) and Nickel(II)-Amine Complexes. Journal of Coordination Chemistry, 1974, 3, 235-247.	0.8	14
174	Ternary Copper(II) Complexes in Solution[1,2] Formed With 8-Aza Derivatives of the Antiviral Nucleotide Analogue 9-[2-(Phosphonomethoxy)Ethyl]Adenine (PMEA). Metal-Based Drugs, 2000, 7, 313-324.	3.8	14
175	Intramolecular stacking interactions in ternary copper(II) complexes1 formed with 2,2â€ ² -bipyridine or 1,10-phenanthroline and 9-(4-phosphonobutyl)adenine (dPMEA), the carba relative of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Journal of Inorganic Biochemistry. 2001. 84. 39-46.	1.5	14
176	Nickel Iron Hydrogenases. , 2007, , 279-322.		14
177	Influence of dioxane on the extent of intramolecular hydrophobic ligand-ligand interactions in the binary Cu2+ 1:2 complexes of L-leucinate, L-valinate and L-norvalinate. Inorganica Chimica Acta, 1989, 155, 273-280.	1.2	13
178	Zinc Metalloneurochemistry: Physiology, Pathology, and Probes. , 2006, , 321-370.		13
179	Acetyl-coenzyme A Synthases and Nickel-Containing Carbon Monoxide Dehydrogenases. , 2007, , 357-415.		13
180	The bio-relevant metals of the periodic table of the elements. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2019, 74, 461-471.	0.3	13

#	Article	IF	CITATIONS
181	Properties of the Magnesium(II) and Calcium(II) Complexes of 5- and 6-Uracilmethylphosphonate (5 Umpa2- and 6 Umpa2-) in Aqueous Solution. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2001, 627, 1882-1887.	0.6	12
182	Quantification of isomeric equilibria formed by metal ion complexes of 8-[2-(phosphonomethoxy)ethyl]-8-azaadenine (8,8aPMEA) and 9-[2-(phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA). Derivatives of the antiviral nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Journal of Biological Inorganic Chemistry, 2004, 9, 961-972.	1,1	12
183	Nickel Toxicity and Carcinogenesis. , 2007, , 619-660.		12
184	Dynamics of Biomineralization and Biodemineralization. , 2008, 4, 413-456.		12
185	Extent of Intramolecular <i>ï€</i> â€Stacks in Aqueous Solution in Mixedâ€Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and Several 2â€Aminopurine Derivatives of the Antivirally Active Nucleotide Analog 9â€{2â€{Phosphonomethoxy)ethyl]adenine (PMEA). Chemistry and Biodiversity, 2012, 9, 2008-2034.	1.0	12
186	The Stability Increasing Effect of the Pyridyl and Imidazole Groups on the Formation of Mixed Amine-Copper(II)-Adenosine 5′-monophosphate Complexes 1, 2. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1972, 27, 1319-1323.	0.3	11
187	Ternary Complexes in Solution, XXX Increased Stability Through Intramolecular Stacking in Mixed-Ligand Cu 2+ and Zn 2+ Complexes of 2,2′ -Bipyridyl and Carboxymethyl Aryl Derivatives. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1979, 34, 208-216.	0.3	11
188	Complex formation between copper(2+) and 1,N6-ethenoadenosine 5'-triphosphate (.epsilonATP). Inorganic Chemistry, 1986, 25, 1313-1315.	1.9	11
189	The Role of Iron in the Pathogenesis of Parkinson's Disease. , 2006, , 125-149.		11
190	Urease: Recent Insights on the Role of Nickel. , 2007, , 241-277.		11
191	Comparison of the Surprising Metalâ€lonâ€Binding Properties of 5―and 6â€Uracilmethylphosphonate (5Umpa ^{2â^'} and 6Umpa ^{2â^'}) in Aqueous Solution and Crystal Structures of the Dimethyl and Di(isopropyl) Esters of H ₂ (6Umpa). Chemistry - A European Journal, 2008, 14, 10036-10046	1.7	11
192	Nickel(II), Copper(II) and Zinc(II) Complexes of 9-[2- (Phosphonomethoxy)ethyl]-8-azaadenine (9,8aPMEA), the 8-Aza Derivative of the Antiviral Nucleotide Analogue 9-[2-(Phosphonomethoxy)ethyl] adenine (PMEA). Quantification of Four Isomeric Species in Aqueous Solution. Bioinorganic Chemistry and Applications, 2004, 2, 331-352.	1.8	10
193	Nickel Ion Complexes of Amino Acids and Peptides. , 2007, , 63-107.		10
194	Acid–base and metal ion binding properties of 2-thiocytidine in aqueous solution. Journal of Biological Inorganic Chemistry, 2008, 13, 663-674.	1.1	10
195	Inosylyl(3′→5′)inosine (Ipl–). Acid–Base and Metal Ion-Binding Properties of a Dinucleoside Monophosphate in Aqueous Solution. Inorganic Chemistry, 2008, 47, 2641-2648.	1.9	10
196	Lead $\hat{a} \in$ '' Its Effects on Environment and Health. , 2017, , .		10
197	Stability and structure of the Mg2+, Ca2+ and Cu2+ complexes of orotidinate 5′-monophosphate (OMP)3â^' in various aqueous 1,4-dioxane mixtures. Inorganica Chimica Acta, 1991, 187, 227-237.	1.2	9
198	Metal ion–carbonyl oxygen recognition in complexes of acetyl phosphate. Journal of Inorganic Biochemistry, 2000, 79, 247-251.	1.5	9

#	Article	IF	CITATIONS
199	Structures of P450 Proteins and Their Molecular Phylogeny. , 2007, , 57-96.		9
200	Nickel Superoxide Dismutase. , 2007, , 417-443.		9
201	Self-association of 1,N6-ethenoadenosine 5'-triphosphate (e-ATP) and promotion by metal ions. FEBS Journal, 1986, 157, 147-151.	0.2	8
202	Influence of Solvent Composition (Water—Dioxane Mixtures) on the Formation Degree of Intramolecular Aromatic-Ring Stacks in Binary Cu(L-Phenylalaninate)2, Cu(L-Tryptophanate)2, and Related Complexes. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1989, 44, 1555-1566.	0.3	8
203	On the Metal-Ion-Coordinating Properties of the Benzimidazolate Residue in Aqueous Solution – Extent of Acidification of Benzimidazole-(N3)H Sites by (N1)-Coordinated Divalent Metal Ions. European Journal of Inorganic Chemistry, 1999, 1999, 1781-1786.	1.0	8
204	Metal Ions and Hydrogen Peroxide. XXV. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1972, 27, 95-100.	0.3	7
205	The Chemical Interplay between Catecholamines and Metal Ions in Neurological Diseases. , 2006, , 281-320.		7
206	The Role of Metal Ions in Neurology. An Introduction. , 2006, , 1-7.		7
207	Chemical Defense and Exploitation. Biotransformation of Xenobiotics by Cytochrome P450 Enzymes. , 2007, , 477-560.		7
208	Diversities and Similarities in P450 Systems: An Introduction. , 2007, , 1-26.		7
209	Chaperones of Nickel Metabolism. , 2007, , 519-544.		7
210	New Ternary Complexes of Copper(II) with 2,2′-Bipyridine (Bpy) and Phosphocholine (PCh–) or the Quaternary 1-(2-Phosphonomethoxy)ethyl Derivative of 2,4-Diaminopyrimidine (PMEDAPy–). European Journal of Inorganic Chemistry, 2007, 2007, 1867-1873.	1.0	7
211	Connectivity patterns and rotamer states of nucleobases determine acid–base properties of metalated purine quartets. Journal of Inorganic Biochemistry, 2015, 148, 93-104.	1.5	7
212	Structural and catalytic roles of metal ions in RNA. Metal lons in Life Sciences, 2011, 9, vii-ix.	2.8	7
213	The Dephosphorylation of Adenosine 5′ -Triphosphate in a Binary and Ternary Zn ²⁺ Complex. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1974, 29, 680-682.	0.6	6
214	Facilitation of the copper(II)-promoted dephosphorylation of adenosine 5′-triphosphate (ATP4â^') by the antiviral nucleotide analogue, 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA)‡. Chemical Communications, 1998, , 1219-1220.	2.2	6
215	Metal Ion-Binding Properties of the Diphosphate Ester Analogue, Methylphosphonylphosphate, in Aqueous Solution. Metal-Based Drugs, 1999, 6, 321-328.	3.8	6

Drug Metabolism as Catalyzed by Human Cytochrome P450 Systems. , 2007, , 561-589.

6

#	Article	IF	CITATIONS
217	Leakage in Cytochrome P450 Reactions in Relation to Protein Structural Properties. , 2007, , 187-234.		6
218	Biochemistry of the Nickel-Dependent Glyoxalase I Enzymes. , 2007, , 445-471.		6
219	Complex Formation of Nickel(II) with Sugar Residues, Nucleobases, Phosphates, Nucleotides, and Nucleic Acids. , 2007, , 109-180.		6
220	Extent of Intramolecular Ï€ Stacks in Aqueous Solution in Mixedâ€Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and 1â€[2â€(Phosphonomethoxy)ethyl]cytosine (PMEC), a Relative of Antivirally Active Acyclic Nucleotide Analogues (Part 72) ^[1, 2] . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2013, 639, 1661-1673.	0.6	6
221	Solution properties of metal ion complexes formed with the antiviral and cytostatic nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (PME2A6DMAP). Canadian Journal of Chemistry, 2014, 92, 771-780.	0.6	6
222	Metal ion complexes of nucleoside phosphorothioates reflecting the ambivalent properties of lead(<scp>ii</scp>). New Journal of Chemistry, 2018, 42, 7551-7559.	1.4	6
223	Properties of the Ternary (Dien)Pt(PMEA-N7) Complex Containing Diethylenetriamine (Dien) and the Antiviral 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA). Synthesis, Biological Screening, Acid-Base Behaviour, and Metal Ion-Binding in Aqueous Solution. Zeitschrift Fur Naturforschung - Section B Iournal of Chemical Sciences. 2000. 55. 1141-1152.	0.3	5
224	The Role of Aluminum in Neurotoxic and Neurodegenerative Processes. , 2006, , 371-393.		5
225	Neurotoxicity of Cadmium, Lead, and Mercury. , 2006, , 395-425.		5
226	Carbon-Carbon Bond Cleavage by P450 Systems. , 2007, , 397-435.		5
227	Acid–base and metal ion-binding properties of thiopyrimidine derivatives. Coordination Chemistry Reviews, 2016, 327-328, 200-220.	9.5	5
228	Extent of intramolecular π stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and the anticancer and antivirally active 9-[2-(phosphonomethoxy)ethyl]guanine (PMEG). A comparison with related acyclic nucleotide analogues. Polyhedron, 2016, 103, 248-260.	1.0	5
229	Metal-ion binding properties of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC,) Tj ETQq1 1 0 472, 283-294.	.784314 r 1.2	gBT /Overlock 5
230	Protection of Adenosine 5?-Triphosphate toward Hydrolysis by the Formation of a Mixed-Ligand Metal Ion Complex. Angewandte Chemie International Edition in English, 1972, 11, 1025-1025.	4.4	4
231	Metal Ion-Binding Properties in Aqueous Solution of the Nucleoside Analogue, 5,6-Dichloro-1-(β-á´ribofuranosyl)benzimidazole (DRB). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1998, 53, 903-908.	0.3	4
232	Solution Structures of Binary and Ternary Metal Ion Complexes of 9-(5-Phosphonopentyl)adenine (3′-deoxa-PEEA). A Nucleotide Analogue Related to the Antivirally Active 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA). European Journal of Inorganic Chemistry, 2003, 2003, 2937-2947.	1.0	4
233	Structural and Functional Mimics of Cytochromes P450. , 2007, , 27-55.		4
234	(N7)-Platination and its effect on (N1)H-acidification in nucleoside phosphate derivatives. Inorganica Chimica Acta, 2016, 452, 137-151.	1.2	4

#	Article	IF	CITATIONS
235	Intramolecular ï€-stacks in mixed-ligand copper(II) complexes formed by heteroaromatic amines and antivirally active acyclic nucleotide analogs carrying a hydroxy-2-(phosphonomethoxy)propyl residue [‡] . Journal of Coordination Chemistry, 2018, 71, 1910-1934.	0.8	4
236	Metal Ion-Coordinating Properties in Aqueous Solutions of the Antivirally Active Nucleotide Analogue (S)-9-[3-Hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA) - Quantification of Complex Isomeric Equilibria. European Journal of Inorganic Chemistry, 2019, 2019, 3892-3903.	1.0	4
237	Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations. Molecules, 2022, 27, 2625.	1.7	4
238	Protein Folding, Misfolding, and Disease. , 2006, , 9-60.		3
239	Design and Engineering of Cytochrome P450 Systems. , 2007, , 437-476.		3
240	Cytochromes P450 - Structural Basis for Binding and Catalysis. , 2007, , 235-265.		3
241	Nickel-Dependent Gene Expression. , 2007, , 581-618.		3
242	Acid–base properties of an antivirally active acyclic nucleoside phosphonate: (<i>S</i>)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA). New Journal of Chemistry, 2022, 46, 6484-6493.	1.4	3
243	Ternary Complexes in Solution, XX. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1974, 29, 654-657.	0.3	2
244	Iron and its Role in Neurodegenerative Diseases. , 2006, , 227-279.		2
245	Neurodegenerative Diseases and Metal Ions. A Concluding Overview. , 2006, , 427-435.		2
246	Cytochrome P450-Catalyzed Hydroxylations and Epoxidations. , 2007, , 319-359.		2
247	Beyond Heme-Thiolate Interactions: Roles of the Secondary Coordination Sphere in Cytochrome P450 Systems. , 2007, , 267-284.		2
248	The Role of Nickel in Environmental Adaptation of the Gastric Pathogen Helicobacter pylori. , 2007, , 545-579.		2
249	11. Complex Formation of Lead(II) with Nucleotides and Their Constituents. , 2017, 17, 319-402.		2
250	Title is missing!. Perkin Transactions II RSC, 2001, , 2005-2011.	1.1	1
251	The Malfunctioning of Copper Transport in Wilson and Menkes Diseases. , 2006, , 207-225.		1
252	In Vivo Assessment of Iron in Huntington's Disease and Other Age-Related Neurodegenerative Brain		1

Diseases. , 2006, , 151-177.

#	Article	IF	CITATIONS
253	Metal Ion Binding Properties of Proteins Related to Neurodegeneration. , 2006, , 61-87.		1
254	The Electrochemistry of Cytochrome P450. , 2007, , 127-155.		1
255	Aquatic P450 Species. , 2007, , 97-126.		1
256	P450 Electron Transfer Reactions. , 2007, , 157-185.		1
257	The Nickel-Regulated Peptidyl Prolyl cis/trans Isomerase SlyD. , 2007, , 501-518.		1
258	Synthetic Models for the Active Sites of Nickel-Containing Enzymes. , 2007, , 181-239.		1
259	Metal Ion Complexes of Antivirally Active Nucleotide Analogues. Conclusions Regarding Their Biological Action. ChemInform, 2004, 35, no.	0.1	0
260	Nucleoside 5′-Triphosphates: Self-Association, Acid—Base, and Metal Ion-Binding Properties in Solution. ChemInform, 2005, 36, no.	0.1	0
261	Metallic Prions: Mining the Core of Transmissible Spongiform Encephalopathies. , 2006, , 89-114.		0
262	Copper-Zinc Superoxide Dismutase and Familial Amyotrophic Lateral Sclerosis. , 2006, , 179-205.		0
263	The Role of Metal Ions in the Amyloid Precursor Protein and in Alzheimer's Disease. , 2006, , 115-123.		0
264	Extent of metal ion-sulfur binding in complexes of thiouracil nucleosides and nucleotides in aqueous solution. Journal of Inorganic Biochemistry, 2007, , .	1.5	0
265	Cytochrome P450 Enzymes: Observations from the Clinic. , 2007, , 591-617.		0
266	Interactions of Cytochrome P450 with Nitric Oxide and Related Ligands. , 2007, , 285-317.		0
267	Preface: metals in the brain. Monatshefte Für Chemie, 2011, 142, 323-324.	0.9	0