
## Trinidad Pérez-Palacios

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2440094/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Comparison of different methods for total lipid quantification in meat and meat products. Food<br>Chemistry, 2008, 110, 1025-1029.                                                                                                                 | 4.2 | 114       |
| 2  | Furans and other volatile compounds in ground roasted and espresso coffee using headspace solid-phase microextraction: Effect of roasting speed. Food and Bioproducts Processing, 2013, 91, 233-241.                                               | 1.8 | 84        |
| 3  | Suitability of Using Monolayered and Multilayered Emulsions for Microencapsulation of ω-3 Fatty Acids<br>by Spray Drying: Effect of Storage at Different Temperatures. Food and Bioprocess Technology, 2015, 8,<br>100-111.                        | 2.6 | 76        |
| 4  | Volatile compound profile of sous-vide cooked lamb loins at different temperature–time combinations. Meat Science, 2015, 100, 52-57.                                                                                                               | 2.7 | 59        |
| 5  | Enrichment of Chicken Nuggets with Microencapsulated Omega-3 Fish Oil: Effect of Frozen Storage<br>Time on Oxidative Stability and Sensory Quality. Food and Bioprocess Technology, 2016, 9, 285-297.                                              | 2.6 | 57        |
| 6  | Gas Chromatography–Mass Spectrometry Method for the Determination of Free Amino Acids as Their<br>Dimethyl- <i>tert</i> -butylsilyl (TBDMS) Derivatives in Animal Source Food. Journal of Agricultural<br>and Food Chemistry, 2012, 60, 2456-2463. | 2.4 | 54        |
| 7  | Evaluation of fresh meat quality by Hyperspectral Imaging (HSI), Nuclear Magnetic Resonance (NMR)<br>and Magnetic Resonance Imaging (MRI): A review. Meat Science, 2021, 172, 108340.                                                              | 2.7 | 50        |
| 8  | Assessment of hydroxymethylfurfural and furfural in commercial bakery products. Journal of Food<br>Composition and Analysis, 2014, 33, 20-25.                                                                                                      | 1.9 | 49        |
| 9  | Applying data mining and Computer Vision Techniques to MRI to estimate quality traits in Iberian hams.<br>Journal of Food Engineering, 2014, 131, 82-88.                                                                                           | 2.7 | 48        |
| 10 | Volatile compounds and physicochemical characteristics during storage of microcapsules from different fish oil emulsions. Food and Bioproducts Processing, 2015, 96, 52-64.                                                                        | 1.8 | 45        |
| 11 | Fatty acid composition in double and multilayered microcapsules of ω-3 as affected by storage conditions and type of emulsions. Food Chemistry, 2016, 194, 476-486.                                                                                | 4.2 | 42        |
| 12 | MRI-based analysis, lipid composition and sensory traits for studying Iberian dry-cured hams from pigs fed with different diets. Food Research International, 2010, 43, 248-254.                                                                   | 2.9 | 41        |
| 13 | Evaluating the use of fish oil microcapsules as omega-3 vehicle in cooked and dry-cured sausages as affected by their processing, storage and cooking. Meat Science, 2020, 162, 108031.                                                            | 2.7 | 39        |
| 14 | Modeling salt diffusion in Iberian ham by applying MRI and data mining. Journal of Food Engineering,<br>2016, 189, 115-122.                                                                                                                        | 2.7 | 38        |
| 15 | Improving the lipid profile of readyâ€ŧoâ€cook meat products by addition of omegaâ€3 microcapsules: effect<br>on oxidation and sensory analysis. Journal of the Science of Food and Agriculture, 2018, 98, 5302-5312.                              | 1.7 | 38        |
| 16 | Subcutaneous and intramuscular lipid traits as tools for classifying Iberian pigs as a function of their feeding background. Meat Science, 2009, 81, 632-640.                                                                                      | 2.7 | 36        |
| 17 | MRI-based analysis of feeding background effect on fresh Iberian ham. Food Chemistry, 2011, 126,<br>1366-1372.                                                                                                                                     | 4.2 | 36        |
| 18 | Influence of pre-cure freezing of Iberian ham on proteolytic changes throughout the ripening process. Meat Science, 2010, 85, 121-126.                                                                                                             | 2.7 | 33        |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Quantification of furanic compounds in coated deep-fried products simulating normal preparation<br>and consumption: Optimisation of HS-SPME analytical conditions by response surface methodology.<br>Food Chemistry, 2012, 135, 1337-1343. | 4.2 | 33        |
| 20 | Development of Bread with <scp><scp>NaCl</scp> </scp> Reduction and Calcium Fortification: Study of Its Quality Characteristics. Journal of Food Quality, 2014, 37, 107-116.                                                                | 1.4 | 33        |
| 21 | Strategies for Enrichment in ω-3 Fatty Acids Aiming for Healthier Meat Products. Food Reviews<br>International, 2019, 35, 485-503.                                                                                                          | 4.3 | 33        |
| 22 | Sous-vide cooking of meat: A Maillarized approach. International Journal of Gastronomy and Food Science, 2019, 16, 100138.                                                                                                                  | 1.3 | 33        |
| 23 | Effect of added phosphate and type of cooking method on physico-chemical and sensory features of cooked lamb loins. Meat Science, 2014, 97, 69-75.                                                                                          | 2.7 | 31        |
| 24 | Enrichment of Cinta Senese burgers with omega-3 fatty acids. Effect of type of addition and storage conditions on quality characteristics. Grasas Y Aceites, 2018, 69, 235.                                                                 | 0.3 | 30        |
| 25 | Prediction of pork quality parameters by applying fractals and data mining on MRI. Food Research<br>International, 2017, 99, 739-747.                                                                                                       | 2.9 | 29        |
| 26 | Effect of dietary conjugated linoleic acid in combination with monounsaturated fatty acids on the meat composition and quality traits of dry-cured loin. Meat Science, 2008, 80, 1309-1319.                                                 | 2.7 | 28        |
| 27 | Impact of cooking and handling conditions on furanic compounds in breaded fish products. Food and Chemical Toxicology, 2013, 55, 222-228.                                                                                                   | 1.8 | 28        |
| 28 | Optimization of MRI Acquisition and Texture Analysis to Predict Physico-chemical Parameters of Loins<br>by Data Mining. Food and Bioprocess Technology, 2017, 10, 750-758.                                                                  | 2.6 | 28        |
| 29 | Volatile compounds of fresh and dry-cured loin as affected by dietary conjugated linoleic acid and monounsaturated fatty acids. Meat Science, 2009, 81, 549-556.                                                                            | 2.7 | 26        |
| 30 | Influence of pre ure freezing on the profile of volatile compounds during the processing of Iberian<br>hams. Journal of the Science of Food and Agriculture, 2010, 90, 882-890.                                                             | 1.7 | 26        |
| 31 | Pre-cure Freezing Effect on Physicochemical, Texture and Sensory Characteristics of Iberian Ham.<br>Food Science and Technology International, 2011, 17, 127-133.                                                                           | 1.1 | 25        |
| 32 | Improvement of a solid phase extraction method for separation of animal muscle phospholipid classes. Food Chemistry, 2007, 102, 875-879.                                                                                                    | 4.2 | 24        |
| 33 | Modification of gelatin functionality for culinary applications by using transglutaminase.<br>International Journal of Gastronomy and Food Science, 2016, 5-6, 27-32.                                                                       | 1.3 | 24        |
| 34 | Physico-chemical and sensory characteristics of freeze-dried and air-dehydrated yogurt foam. LWT -<br>Food Science and Technology, 2017, 80, 328-334.                                                                                       | 2.5 | 24        |
| 35 | Study of hydroxymethylfurfural and furfural formation in cakes during baking in different ovens, using a validated multiple-stage extraction-based analytical method. Food Chemistry, 2013, 141, 3349-3356.                                 | 4.2 | 23        |
| 36 | Data Mining on MRI-Computational Texture Features to Predict Sensory Characteristics in Ham. Food and Bioprocess Technology, 2016, 9, 699-708.                                                                                              | 2.6 | 23        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of solvent to sample ratio on total lipid extracted and fatty acid composition in meat products within different fat content. Meat Science, 2012, 91, 369-373.                                        | 2.7 | 22        |
| 38 | Improvement of encapsulation and stability of EPA and DHA from monolayered and multilayered<br>emulsions by highâ€pressure homogenization. Journal of Food Processing and Preservation, 2020, 44,<br>e14290. | 0.9 | 22        |
| 39 | Fatty acid composition and oxidative susceptibility of fresh loin and liver from pigs fed conjugated linoleic acid in combination with monounsaturated fatty acids. Food Chemistry, 2008, 108, 86-96.        | 4.2 | 21        |
| 40 | Nonâ€destructive analysis of sensory traits of dry ured loins by <scp>MRI</scp> –computer vision techniques and data mining. Journal of the Science of Food and Agriculture, 2017, 97, 2942-2952.            | 1.7 | 20        |
| 41 | Determination of Free Amino Acids in Coated Foods by GC–MS: Optimization of the Extraction<br>Procedure by Using Statistical Design. Food Analytical Methods, 2014, 7, 172-180.                              | 1.3 | 18        |
| 42 | Nearâ€infrared spectroscopyâ€based analysis to study sensory parameters on pork loins as affected by cooking methods and conditions. Journal of the Science of Food and Agriculture, 2018, 98, 4227-4236.    | 1.7 | 18        |
| 43 | Analysis of MRI by fractals for prediction of sensory attributes: A case study in loin. Journal of Food<br>Engineering, 2018, 227, 1-10.                                                                     | 2.7 | 18        |
| 44 | Carcass and meat quality traits of Iberian pig as affected by sex and crossbreeding with different<br>Duroc genetic lines. Spanish Journal of Agricultural Research, 2013, 11, 1057.                         | 0.3 | 18        |
| 45 | Optimization and Application of a HS-SPME-GC-MS Methodology for Quantification of Furanic Compounds in Espresso Coffee. Food Analytical Methods, 2014, 7, 81-88.                                             | 1.3 | 17        |
| 46 | Changes in chemical composition of frozen coated fish products during deep-frying. International<br>Journal of Food Sciences and Nutrition, 2014, 65, 212-218.                                               | 1.3 | 17        |
| 47 | A Rapid and Accurate Extraction Procedure for Analysing Free Amino Acids in Meat Samples by GC-MS.<br>International Journal of Analytical Chemistry, 2015, 2015, 1-8.                                        | 0.4 | 17        |
| 48 | Near Infrared Reflectance spectroscopy to analyse texture related characteristics of sous vide pork loin Journal of Food Engineering, 2019, 263, 417-423.                                                    | 2.7 | 17        |
| 49 | New fractal features and data mining to determine food quality based on MRI. IEEE Latin America Transactions, 2017, 15, 1777-1784.                                                                           | 1.2 | 16        |
| 50 | Comparison of different image analysis algorithms on MRI to predict physico-chemical and sensory attributes of loin. Chemometrics and Intelligent Laboratory Systems, 2018, 180, 54-63.                      | 1.8 | 16        |
| 51 | Study on fish oil microcapsules as neat and added to meat model systems: Enrichment and bioaccesibility of EPA and DHA. LWT - Food Science and Technology, 2020, 120, 108946.                                | 2.5 | 14        |
| 52 | Improvements in the methodology for fatty acids analysis in meat products: One-stage transmethylation and fast-GC method. Food Chemistry, 2022, 371, 130995.                                                 | 4.2 | 14        |
| 53 | Lipid digestion and oxidative stability in ω-3-enriched meat model systems: Effect of fish oil microcapsules and processing or culinary cooking. Food Chemistry, 2020, 328, 127125.                          | 4.2 | 14        |
| 54 | Influence of pre ure freezing of Iberian hams on lipolytic changes and lipid oxidation. International<br>Journal of Food Science and Technology, 2009, 44, 2287-2295.                                        | 1.3 | 13        |

TRINIDAD PéREZ-PALACIOS

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Sensory traits prediction in dry-cured hams from fresh product via MRI and lipid composition. Journal of Food Engineering, 2010, 101, 152-157.                                                                               | 2.7 | 13        |
| 56 | Stereospecific analysis of phospholipid classes in rat muscle. European Journal of Lipid Science and Technology, 2006, 108, 835-841.                                                                                         | 1.0 | 12        |
| 57 | Taste compounds and consumer acceptance of chicken soups as affected by cooking conditions.<br>International Journal of Food Properties, 2017, 20, S154-S165.                                                                | 1.3 | 12        |
| 58 | Applying 3D texture algorithms on MRI to evaluate quality traits of loin. Journal of Food Engineering, 2018, 222, 258-266.                                                                                                   | 2.7 | 12        |
| 59 | New contributions of ultrasound inspection to the characterization of different varieties of honey.<br>Ultrasonics, 2019, 96, 83-89.                                                                                         | 2.1 | 12        |
| 60 | Monitoring the Processing of Dry Fermented Sausages with a Portable NIRS Device. Foods, 2020, 9, 1294.                                                                                                                       | 1.9 | 12        |
| 61 | Individual Phospholipid Classes from Iberian Pig Meat As Affected by Diet. Journal of Agricultural and<br>Food Chemistry, 2010, 58, 1755-1760.                                                                               | 2.4 | 11        |
| 62 | Napping combined with ultra-flash profile (UFP) methodology for sensory assessment of cod and pork<br>subjected to different cooking methods and conditions. European Food Research and Technology,<br>2019, 245, 2221-2231. | 1.6 | 11        |
| 63 | Including 3D-textures in a Computer Vision System to Analyze Quality Traits of Loin. Lecture Notes in Computer Science, 2015, , 456-465.                                                                                     | 1.0 | 11        |
| 64 | Effect of dietary conjugated linoleic acid in combination with monounsaturated fatty acids on the composition and quality traits of cooked loin. Food Chemistry, 2011, 124, 518-526.                                         | 4.2 | 10        |
| 65 | Effect of Omega-3 Microcapsules Addition on the Profile of Volatile Compounds in Enriched<br>Dry-Cured and Cooked Sausages. Foods, 2020, 9, 1683.                                                                            | 1.9 | 10        |
| 66 | Muscle individual phospholipid classes throughout the processing of dry-cured ham: Influence of pre-cure freezing. Meat Science, 2010, 84, 431-436.                                                                          | 2.7 | 9         |
| 67 | Quantification of 5-Hydroxymethylfurfural in Coated Deep-Fried Products: Optimization of the Extraction Procedure by Using Statistical Design. Food Analytical Methods, 2013, 6, 10-16.                                      | 1.3 | 9         |
| 68 | Microencapsulation of oil and protein hydrolysate from fish within a high-pressure homogenized double emulsion. Journal of Food Science and Technology, 2020, 57, 60-69.                                                     | 1.4 | 9         |
| 69 | Lipid digestion products in meat derivatives enriched with fish oil microcapsules. Journal of Functional Foods, 2020, 68, 103916.                                                                                            | 1.6 | 9         |
| 70 | 1H NMR to analyse the lipid profile in the glyceride fraction of different categories of Iberian dry-cured hams. Food Chemistry, 2022, 383, 132371.                                                                          | 4.2 | 9         |
| 71 | Stereospecific Analysis of Phospholipid Classes in Skeletal Muscle from Rats Fed Different Fat<br>Sources. Journal of Agricultural and Food Chemistry, 2007, 55, 6191-6197.                                                  | 2.4 | 8         |
| 72 | Fish oil/lycopene microcapsules as a source of eicosapentaenoic and docosahexaenoic acids: a case study on spreads. Journal of the Science of Food and Agriculture, 2020, 100, 1875-1886.                                    | 1.7 | 8         |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Sensory profile and consumer perception of meat products enriched with EPA and DHA using fish oil microcapsules. International Journal of Food Science and Technology, 2021, 56, 2926-2937.                                       | 1.3 | 8         |
| 74 | Effetto del tipo di conservazione e arricchimento in omega-3 sulla qualità di hamburger di Cinta<br>Senese. Archivos De Zootecnia, 2018, 67, 217-220.                                                                             | 0.2 | 8         |
| 75 | Liver pâté from pigs fed conjugated linoleic acid and monounsaturated fatty acids. European Food<br>Research and Technology, 2009, 228, 749-758.                                                                                  | 1.6 | 7         |
| 76 | Quality characteristics of fried lamb nuggets from low-value meat cuts: Effect of formulation and freezing storage. Food Science and Technology International, 2015, 21, 503-511.                                                 | 1.1 | 5         |
| 77 | Fish Oil Microcapsules as Omega-3 Enrichment Strategy: Changes in Volatile Compounds of Meat<br>Products during Storage and Cooking. Foods, 2021, 10, 745.                                                                        | 1.9 | 5         |
| 78 | Ultrasound parameters used to characterize Iberian fresh pork loins of different feeding systems.<br>Journal of Food Engineering, 2022, 314, 110795.                                                                              | 2.7 | 5         |
| 79 | Sodium chloride determination in meat products: Comparison of the official titration-based method with atomic absorption spectrometry. Journal of Food Composition and Analysis, 2022, 108, 104425.                               | 1.9 | 5         |
| 80 | Nutritional and Sensory Characteristics of Breadâ€Coated Hake Fillets as Affected by Cooking<br>Conditions. Journal of Food Quality, 2013, 36, 375-384.                                                                           | 1.4 | 4         |
| 81 | Development of a New Fractal Algorithm to Predict Quality Traits of MRI Loins. Lecture Notes in Computer Science, 2017, , 208-218.                                                                                                | 1.0 | 4         |
| 82 | Analysis of lipids and lipid oxidation products. , 2020, , 217-239.                                                                                                                                                               |     | 4         |
| 83 | An experimental protocol to determine quality parameters of dry-cured loins using low-field<br>Magnetic Resonance Imaging. Journal of Food Engineering, 2022, 313, 110750.                                                        | 2.7 | 4         |
| 84 | Non-destructively Prediction of Quality Parameters of Dry-Cured Iberian Ham by Applying Computer<br>Vision and Low-Field MRI. Lecture Notes in Computer Science, 2019, , 498-507.                                                 | 1.0 | 4         |
| 85 | Use of Magnetic Resonance Imaging to Analyse Meat and Meat Products Non-destructively. Food<br>Reviews International, 2023, 39, 424-440.                                                                                          | 4.3 | 3         |
| 86 | Computer vision techniques on magnetic resonance images for the non-destructive classification and quality prediction of chicken breasts affected by the White-Striping myopathy. Journal of Food Engineering, 2021, 306, 110633. | 2.7 | 3         |
| 87 | Dry-cured loin characterization by ultrasound physicochemical and sensory parameters. European<br>Food Research and Technology, 2022, 248, 2603-2613.                                                                             | 1.6 | 3         |
| 88 | Effect of muscle type and frozen storage on the quality parameters of Iberian restructured meat preparations. Food Science and Technology International, 2014, 20, 543-554.                                                       | 1.1 | 2         |
| 89 | Volatile compounds of experimental liver pâté from pigs fed conjugated linoleic acid in combination<br>with monounsaturated fatty acids. Journal of the Science of Food and Agriculture, 2009, 89,<br>2096-2106.                  | 1.7 | 1         |
| 90 | Prediction of Quality Features in Iberian Ham by Applying Data Mining on Data From MRI and Computer<br>Vision Techniques. International Journal of Data Mining & Knowledge Management Process, 2014, 4,<br>1-11.                  | 0.1 | 1         |

| #  | Article                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Optimization of the image acquisition procedure in low-field MRI for non-destructive analysis of loin using predictive models. PeerJ Computer Science, 2021, 7, e583. | 2.7 | 1         |
| 92 | Analysis of Phospholipids in Muscle Foods. , 2008, , 167-186.                                                                                                         |     | 1         |
| 93 | Improvements in the Procedures to Encapsulate Diverse Bioactive Compounds. Foods, 2022, 11, 205.                                                                      | 1.9 | 1         |
| 94 | Lipid Oxidation in Meat Systems: Updated Means of Detection and Innovative Antioxidant Strategies. , 2022, , 93-111.                                                  |     | 1         |
| 95 | A Computer-Aided Inspection System to Predict Quality Characteristics in Food Technology. IEEE Access, 2022, 10, 71496-71507.                                         | 2.6 | 1         |