Dmitriy Zamarin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2439342/publications.pdf

Version: 2024-02-01

87843 56687 8,563 97 38 83 citations g-index h-index papers 102 102 102 12655 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Phase II study of enzalutamide in androgen receptor positive, recurrent, high- and low-grade serous ovarian cancer. Gynecologic Oncology, 2022, 164, 12-17.	0.6	6
2	Senescence induction dictates response to chemo- and immunotherapy in preclinical models of ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33
3	Genomic characterization of metastatic patterns from prospective clinical sequencing of 25,000 patients. Cell, 2022, 185, 563-575.e11.	13.5	223
4	Targeting Ribonucleotide Reductase Induces Synthetic Lethality in PP2A-Deficient Uterine Serous Carcinoma. Cancer Research, 2022, 82, 721-733.	0.4	4
5	Recurrent <i>WWTR1</i> <scp>S89W</scp> mutations and Hippo pathway deregulation in clear cell carcinomas of the cervix. Journal of Pathology, 2022, 257, 635-649.	2.1	2
6	Beyond T Cells: IgA Incites Immune Recognition in Endometrial Cancer. Cancer Research, 2022, 82, 766-768.	0.4	4
7	Fundamental immune–oncogenicity trade-offs define driver mutationÂfitness. Nature, 2022, 606, 172-179.	13.7	23
8	Tumor-Derived Lysophosphatidic Acid Blunts Protective Type I Interferon Responses in Ovarian Cancer. Cancer Discovery, 2022, 12, 1904-1921.	7.7	25
9	Treatment of ovarian clear cell carcinoma with immune checkpoint blockade: a case series. International Journal of Gynecological Cancer, 2022, , ijgc-2022-003430.	1.2	5
10	Anti-CSF-1R emactuzumab in combination with anti-PD-L1 atezolizumab in advanced solid tumor patients na $ ilde{A}$ -ve or experienced for immune checkpoint blockade., 2022, 10, e004076.		30
11	Abstract CT218: First-in-human trial of intravenous MEDI9253, an oncolytic virus, in combination with durvalumab in patients with advanced solid tumors. Cancer Research, 2022, 82, CT218-CT218.	0.4	0
12	Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer. Nature Cancer, 2022, 3, 723-733.	5.7	82
13	Functional landscapes of POLE and POLD1 mutations in checkpoint blockade-dependent antitumor immunity. Nature Genetics, 2022, 54, 996-1012.	9.4	30
14	Recommendations for Testing and Treating Outpatient Cancer Patients in the Era of COVID-19. Journal of the National Cancer Institute, 2021, 113, 820-822.	3.0	7
15	A phase I open-label study of selinexor with paclitaxel and carboplatin in patients with advanced ovarian or endometrial cancers. Gynecologic Oncology, 2021, 160, 71-76.	0.6	9
16	Immunotherapy and radiation therapy sequencing: State of the data on timing, efficacy, and safety. Cancer, 2021, 127, 1553-1567.	2.0	33
17	Abstract PO068: Distinct immune signatures predicting clinical response to PD-1 blockade therapy in gynecological cancers revealed by high-dimensional immune profiling. , 2021, , .		O
18	Targeting galectin-3 with a high-affinity antibody for inhibition of high-grade serous ovarian cancer and other MUC16/CA-125-expressing malignancies. Scientific Reports, 2021, 11, 3718.	1.6	18

#	Article	IF	CITATIONS
19	Expanding Our Impact in Cervical Cancer Treatment: Novel Immunotherapies, Radiation Innovations, and Consideration of Rare Histologies. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2021, 41, 252-263.	1.8	8
20	Challenges and Opportunities for Immunotherapy in Gynecologic Cancer. Advances in Oncology, 2021, 1, 113-123.	0.1	0
21	Standardized Uptake Value Illuminates Tumor Inflammation and Treatment Response. Clinical Cancer Research, 2021, 27, clincanres.1350.2021.	3.2	0
22	Genetic and molecular subtype heterogeneity in newly diagnosed early- and advanced-stage endometrial cancer. Gynecologic Oncology, 2021, 161, 535-544.	0.6	16
23	Molecular characterization of high-grade serous ovarian cancers occurring in younger and older women. Gynecologic Oncology, 2021, 161, 545-552.	0.6	8
24	Tumor Immunity and Immunotherapy for HPV-Related Cancers. Cancer Discovery, 2021, 11, 1896-1912.	7.7	71
25	Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell, 2021, 184, 4032-4047.e31.	13.5	131
26	Tim-4+ cavity-resident macrophages impair anti-tumor CD8+ TÂcell immunity. Cancer Cell, 2021, 39, 973-988.e9.	7.7	93
27	Pattern of disease and response to pembrolizumab in recurrent cervical cancer. Gynecologic Oncology Reports, 2021, 37, 100831.	0.3	4
28	Rejuvenating dysfunctional TÂcells in ovarian cancer: CD28 is the license to kill. Cancer Cell, 2021, 39, 1567-1569.	7.7	3
29	Geometric network analysis provides prognostic information in patients with high grade serous carcinoma of the ovary treated with immune checkpoint inhibitors. Npj Genomic Medicine, 2021, 6, 99.	1.7	13
30	Preparation of single cells from tumors for single-cell RNA sequencing. Methods in Enzymology, 2020, 632, 295-308.	0.4	11
31	Identification of recurrent FHL2-GLI2 oncogenic fusion in sclerosing stromal tumors of the ovary. Nature Communications, 2020, 11, 44.	5.8	34
32	Phase II study of atezolizumab in combination with bevacizumab in patients with advanced cervical cancer., 2020, 8, e001126.		54
33	Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-enhanced computed tomography in endometrial cancers. Scientific Reports, 2020, 10, 17769.	1.6	35
34	Newcastle Disease Virus at the Forefront of Cancer Immunotherapy. Cancers, 2020, 12, 3552.	1.7	53
35	Carcinoma-Associated Mesenchymal Stem Cells Promote Chemoresistance in Ovarian Cancer Stem Cells via PDGF Signaling. Cancers, 2020, 12, 2063.	1.7	43
36	Blockade of the AHR restricts a Treg-macrophage suppressive axis induced by L-Kynurenine. Nature Communications, 2020, 11, 4011.	5.8	198

#	Article	IF	CITATIONS
37	Phase Ib study of anti-CSF-1R antibody emactuzumab in combination with CD40 agonist selicrelumab in advanced solid tumor patients., 2020, 8, e001153.		37
38	Unraveling tumor–immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapy. Nature Genetics, 2020, 52, 582-593.	9.4	136
39	Utility of serum CA-125 monitoring in patients with ovarian cancer undergoing immune checkpoint inhibitor therapy. Gynecologic Oncology, 2020, 158, 303-308.	0.6	4
40	<i>BRCA</i> Mutations, Homologous DNA Repair Deficiency, Tumor Mutational Burden, and Response to Immune Checkpoint Inhibition in Recurrent Ovarian Cancer. JCO Precision Oncology, 2020, 4, 665-679.	1.5	29
41	Safety, immunogenicity, and clinical efficacy of durvalumab in combination with folate receptor alpha vaccine TPIV200 in patients with advanced ovarian cancer: a phase II trial., 2020, 8, e000829.		34
42	Mogamulizumab in Combination with Durvalumab or Tremelimumab in Patients with Advanced Solid Tumors: A Phase I Study. Clinical Cancer Research, 2020, 26, 4531-4541.	3.2	46
43	A phase 1 dose-escalation study of intraperitoneal cisplatin, intravenous/intraperitoneal paclitaxel, bevacizumab, and olaparib for newly diagnosed ovarian cancer. Gynecologic Oncology, 2020, 157, 214-221.	0.6	2
44	Randomized Phase II Trial of Nivolumab Versus Nivolumab and Ipilimumab for Recurrent or Persistent Ovarian Cancer: An NRG Oncology Study. Journal of Clinical Oncology, 2020, 38, 1814-1823.	0.8	202
45	Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. , 2020, 8, e000337.		610
46	Pan-cancer Analysis of CDK12 Alterations Identifies a Subset of Prostate Cancers with Distinct Genomic and Clinical Characteristics. European Urology, 2020, 78, 671-679.	0.9	72
47	Design and Production of Newcastle Disease Virus for Intratumoral Immunomodulation. Methods in Molecular Biology, 2020, 2058, 133-154.	0.4	15
48	Anti-PD-L1 (atezolizumab) as an immune primer and concurrently with extended-field chemoradiotherapy for node-positive locally advanced cervical cancer. International Journal of Gynecological Cancer, 2020, 30, 701-704.	1.2	24
49	TOX is a critical regulator of tumour-specific T cell differentiation. Nature, 2019, 571, 270-274.	13.7	697
50	Immunomodulatory Drugs Encoded by Oncolytic Viruses: Is the Whole Greater Than the Sum?. Molecular Therapy, 2019, 27, 1874-1877.	3.7	0
51	Subsequent therapies and survival after immunotherapy in recurrent ovarian cancer. Gynecologic Oncology, 2019, 155, 51-57.	0.6	14
52	Role of Immunotherapy in the Management of Locally Advanced and Recurrent/Metastatic Cervical Cancer. Journal of the National Comprehensive Cancer Network: JNCCN, 2019, 17, 91-97.	2.3	47
53	Computed Tomography–Derived Radiomic Metrics Can Identify Responders to Immunotherapy in Ovarian Cancer. JCO Precision Oncology, 2019, 3, 1-13.	1.5	16
54	Early disease progression and treatment discontinuation in patients with advanced ovarian cancer receiving immune checkpoint blockade. Gynecologic Oncology, 2019, 152, 251-258.	0.6	33

#	Article	IF	CITATIONS
55	Virus, Vessel, Victory: A Novel Approach to Tumor Killing. Clinical Cancer Research, 2019, 25, 1446-1448.	3.2	3
56	A phase II trial of durvalumab with or without tremelimumab in patients with persistent or recurrent endometrial carcinoma and endometrial carcinosarcoma Journal of Clinical Oncology, 2019, 37, 5582-5582.	0.8	25
57	Adjuvant chemotherapy in patients with operable granulosa cell tumors of the ovary: a surveillance, epidemiology, and end results cohort study. Cancer Medicine, 2018, 7, 2280-2287.	1.3	21
58	Immune-Active Microenvironment in Small Cell Carcinoma of the Ovary, Hypercalcemic Type: Rationale for Immune Checkpoint Blockade. Journal of the National Cancer Institute, 2018, 110, 787-790.	3.0	123
59	Pre-existing Immunity to Oncolytic Virus Potentiates Its Immunotherapeutic Efficacy. Molecular Therapy, 2018, 26, 1008-1019.	3.7	103
60	Vanadium: A Panacea for Resistance to Oncolytic Immunotherapy?. Molecular Therapy, 2018, 26, 9-12.	3.7	6
61	Combination Immune Checkpoint Blockade Strategies to Maximize Immune Response in Gynecological Cancers. Current Oncology Reports, 2018, 20, 94.	1.8	43
62	IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature, 2018, 562, 423-428.	13.7	252
63	Clinical Utility of Prospective Molecular Characterization in Advanced Endometrial Cancer. Clinical Cancer Research, 2018, 24, 5939-5947.	3.2	100
64	PD-L1 in tumor microenvironment mediates resistance to oncolytic immunotherapy. Journal of Clinical Investigation, 2018, 128, 1413-1428.	3.9	111
65	A phase I study of concomitant galinpepimut-s (GPS) in combination with nivolumab (nivo) in patients (pts) with WT1+ ovarian cancer (OC) in second or third remission Journal of Clinical Oncology, 2018, 36, 5553-5553.	0.8	5
66	Lysis-independent potentiation of immune checkpoint blockade by oncolytic virus. Oncotarget, 2018, 9, 28702-28716.	0.8	27
67	Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nature Communications, 2017, 8, 14340.	5.8	110
68	Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells. Science Immunology, 2017, 2, .	5.6	101
69	Heterogeneous Tumor-Immune Microenvironments among Differentially Growing Metastases in an Ovarian Cancer Patient. Cell, 2017, 170, 927-938.e20.	13.5	368
70	Validation of Anti-Mouse PDL-1 Goat Polyclonal Antibody Staining with Mouse PDL-1 In Situ Hybridization on Adjacent Sections of Cell Pellets and Mouse Tumors. Methods in Molecular Biology, 2017, 1554, 253-262.	0.4	2
71	Leveraging immunotherapy for the treatment of gynecologic cancers in the era of precision medicine. Gynecologic Oncology, 2016, 141, 86-94.	0.6	26
72	Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine, 2016, 6, 50-58.	2.7	113

#	Article	IF	Citations
73	Immune checkpoint modulation: Rational design of combination strategies., 2015, 150, 23-32.		76
74	The New Era of Cancer Immunotherapy. Advances in Cancer Research, 2015, 128, 1-68.	1.9	41
75	Cancer therapy with Newcastle disease virus: rationale for new immunotherapeutic combinations. Clinical Investigation, 2015, 5, 75-87.	0.0	1
76	Tumor-Expressed IDO Recruits and Activates MDSCs in a Treg-Dependent Manner. Cell Reports, 2015, 13, 412-424.	2.9	387
77	Replication-Competent Viruses as Cancer Immunotherapeutics: Emerging Clinical Data. Human Gene Therapy, 2015, 26, 538-549.	1.4	19
78	Localized Oncolytic Virotherapy Overcomes Systemic Tumor Resistance to Immune Checkpoint Blockade Immunotherapy. Science Translational Medicine, 2014, 6, 226ra32.	5.8	590
79	Harnessing the immune system for cancer therapy. Current Opinion in Oncology, 2014, 26, 600-607.	1.1	25
80	Potentiation of immunomodulatory antibody therapy with oncolytic viruses for treatment of cancer. Molecular Therapy - Oncolytics, 2014, 1 , 14004 .	2.0	33
81	Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. Journal of Experimental Medicine, 2013, 210, 1389-1402.	4.2	562
82	Oncolytic Newcastle disease virus for cancer therapy: old challenges and new directions. Future Microbiology, 2012, 7, 347-367.	1.0	185
83	Reactive Polyclonal Gammopathy Associated with Polyclonal Plasmacytosis Is Common in Patients with Multiple Myeloma Receiving Prolonged Lenalidomide Therapy: A Retrospective Study of 104 Patients. Blood, 2012, 120, 4033-4033.	0.6	0
84	Oncolytic Specificity of Newcastle Disease Virus Is Mediated by Selectivity for Apoptosis-Resistant Cells. Journal of Virology, 2011, 85, 6015-6023.	1.5	119
85	Therapeutic effects of a fusogenic newcastle disease virus in treating head and neck cancer. Head and Neck, 2011, 33, 1394-1399.	0.9	33
86	Polyclonal IgA Gammopathy Associated with Polyclonal Plasmacytosis in Patients Receiving Lenalidomide Maintenance Therapy. Blood, 2011, 118, 5130-5130.	0.6	7
87	Patterns of Disease Relapse and Progression in Patients with Multiple Myeloma After First Line Therapy with Autologous Stem Cell Transplantation: Implications for Patient Monitoring After Transplantation. Blood, 2011, 118, 825-825.	0.6	0
88	Antitumor efficacy of viral therapy using genetically engineered Newcastle disease virus [NDV(F3aa)-GFP] for peritoneally disseminated gastric cancer. Journal of Molecular Medicine, 2010, 88, 589-596.	1.7	49
89	Detection of Free Peritoneal Cancer Cells in Gastric Cancer Using Cancer-Specific Newcastle Disease Virus. Journal of Gastrointestinal Surgery, 2010, 14, 7-14.	0.9	11
90	Genetically Engineered Oncolytic Newcastle Disease Virus Effectively Induces Sustained Remission of Malignant Pleural Mesothelioma. Molecular Cancer Therapeutics, 2010, 9, 2761-2769.	1.9	33

#	Article	IF	CITATION
91	Enhancement of Oncolytic Properties of Recombinant Newcastle Disease Virus Through Antagonism of Cellular Innate Immune Responses. Molecular Therapy, 2009, 17, 697-706.	3.7	84
92	Influenza A Virus PB1-F2 Protein Contributes to Viral Pathogenesis in Mice. Journal of Virology, 2006, 80, 7976-7983.	1.5	276
93	Influenza Virus PB1-F2 Protein Induces Cell Death through Mitochondrial ANT3 and VDAC1. PLoS Pathogens, 2005, 1, e4.	2.1	306
94	Nuclear Localization of the Nipah Virus W Protein Allows for Inhibition of both Virus- and Toll-Like Receptor 3-Triggered Signaling Pathways. Journal of Virology, 2005, 79, 6078-6088.	1.5	174
95	Attenuation of Equine Influenza Viruses through Truncations of the NS1 Protein. Journal of Virology, 2005, 79, 8431-8439.	1.5	220
96	A Single Amino Acid Substitution in 1918 Influenza Virus Hemagglutinin Changes Receptor Binding Specificity. Journal of Virology, 2005, 79, 11533-11536.	1.5	356
97	Differential IL-10R1 Expression Plays a Critical Role in IL-10-Mediated Immune Regulation. Journal of Immunology, 2001, 167, 6884-6892.	0.4	85