Yuichi Shichino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2438905/publications.pdf

Version: 2024-02-01

623188 794141 1,125 25 14 19 h-index citations g-index papers 32 32 32 1618 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cap-specific terminal <i>N</i> ⁶ -methylation of RNA by an RNA polymerase Il–associated methyltransferase. Science, 2019, 363, .	6.0	262
2	The Translation Inhibitor Rocaglamide Targets a Bimolecular Cavity between eIF4A and Polypurine RNA. Molecular Cell, 2019, 73, 738-748.e9.	4.5	128
3	Genome-wide Survey of Ribosome Collision. Cell Reports, 2020, 31, 107610.	2.9	119
4	Hexanucleotide motifs mediate recruitment of the RNA elimination machinery to silent meiotic genes. Open Biology, 2012, 2, 120014.	1.5	101
5	Codon bias confers stability to human <scp>mRNA</scp> s. EMBO Reports, 2019, 20, e48220.	2.0	100
6	Mmi1 RNA surveillance machinery directs RNAi complex RITS to specific meiotic genes in fission yeast. EMBO Journal, 2012, 31, 2296-2308.	3.5	79
7	Meiotic long non-coding meiRNA accumulates as a dot at its genetic locus facilitated by Mmi1 and plays as a decoy to lure Mmi1. Open Biology, 2014, 4, 140022.	1.5	54
8	The long non-coding RNA world in yeasts. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 147-154.	0.9	52
9	Selective termination of lnc <scp>RNA</scp> transcription promotes heterochromatin silencing and cell differentiation. EMBO Journal, 2017, 36, 2626-2641.	3.5	45
10	Dual targeting of DDX3 and eIF4A by the translation inhibitor rocaglamide A. Cell Chemical Biology, 2021, 28, 475-486.e8.	2.5	37
11	YTH-RNA-binding protein prevents deleterious expression of meiotic proteins by tethering their mRNAs to nuclear foci. ELife, 2018, 7, .	2.8	32
12	Meiotic gene silencing complex MTREC/NURS recruits the nuclear exosome to YTH-RNA-binding protein Mmi1. PLoS Genetics, 2020, 16, e1008598.	1.5	23
13	Combinatorial analysis of translation dynamics reveals eIF2 dependence of translation initiation at near-cognate codons. Nucleic Acids Research, 2021, 49, 7298-7317.	6.5	22
14	elF2B-capturing viral protein NSs suppresses the integrated stress response. Nature Communications, 2021, 12, 7102.	5.8	21
15	Selective translation of epigenetic modifiers affects the temporal pattern and differentiation of neural stem cells. Nature Communications, 2022, 13, 470.	5.8	20
16	Implications of RNG140 (caprin2)-mediated translational regulation in eye lens differentiation. Journal of Biological Chemistry, 2020, 295, 15029-15044.	1.6	10
17	N-terminal deletion of Swi3 created by the deletion of a dubious ORF YJL175W mitigates protein burden effect in S. cerevisiae. Scientific Reports, 2020, 10, 9500.	1.6	5
18	Compounds for selective translational inhibition. Current Opinion in Chemical Biology, 2022, 69, 102158.	2.8	5

Үиісні **S**нісні NO

#	Article	IF	CITATIONS
19	Free glycans derived from O-mannosylated glycoproteins suggest the presence of an O-glycoprotein degradation pathway in yeast. Journal of Biological Chemistry, 2019, 294, 15900-15911.	1.6	4
20	Title is missing!. , 2020, 16, e1008598.		O
21	Title is missing!. , 2020, 16, e1008598.		O
22	Title is missing!. , 2020, 16, e1008598.		O
23	Title is missing!. , 2020, 16, e1008598.		O
24	Title is missing!. , 2020, 16, e1008598.		0
25	Title is missing!. , 2020, 16, e1008598.		O