Gregory G Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2438570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of Fatty Acid Binding Proteins and Long Chain Fatty Acids in Modulating Nuclear Receptors and Gene Transcription. Lipids, 2008, 43, 1-17.	1.7	212
2	Gene structure, intracellular localization, and functional roles of sterol carrier protein-2. Progress in Lipid Research, 2001, 40, 498-563.	11.6	204
3	Liver fatty acid-binding protein and obesity. Journal of Nutritional Biochemistry, 2010, 21, 1015-1032.	4.2	180
4	Decreased Liver Fatty Acid Binding Capacity and Altered Liver Lipid Distribution in Mice Lacking the Liver Fatty Acid-binding Protein Gene. Journal of Biological Chemistry, 2003, 278, 21429-21438.	3.4	150
5	Liver fatty acid binding protein gene ablation potentiates hepatic cholesterol accumulation in cholesterol-fed female mice. American Journal of Physiology - Renal Physiology, 2006, 290, G36-G48.	3.4	66
6	Hepatic phenotype of liver fatty acid binding protein gene-ablated mice. American Journal of Physiology - Renal Physiology, 2009, 297, G1053-G1065.	3.4	59
7	Liver fatty-acid-binding protein (L-FABP) gene ablation alters liver bile acid metabolism in male mice. Biochemical Journal, 2005, 391, 549-560.	3.7	58
8	Ablation of the Liver Fatty Acid Binding Protein Gene Decreases Fatty Acyl CoA Binding Capacity and Alters Fatty Acyl CoA Pool Distribution in Mouse Liver. Biochemistry, 2003, 42, 11520-11532.	2.5	57
9	FABP1: A Novel Hepatic Endocannabinoid and Cannabinoid Binding Protein. Biochemistry, 2016, 55, 5243-5255.	2.5	47
10	Fatty Acid Binding Proteinâ€1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids, 2016, 51, 655-676.	1.7	41
11	Impact of L-FABP and glucose on polyunsaturated fatty acid induction of PPARα-regulated β-oxidative enzymes. American Journal of Physiology - Renal Physiology, 2013, 304, G241-G256.	3.4	40
12	Structure and Function of the Sterol Carrier Protein-2 N-Terminal Presequence. Biochemistry, 2008, 47, 5915-5934.	2.5	38
13	The Human Liver Fatty Acid Binding Protein T94A Variant Alters the Structure, Stability, and Interaction with Fibrates. Biochemistry, 2013, 52, 9347-9357.	2.5	37
14	Liver Fatty Acid-Binding Protein Gene-Ablated Female Mice Exhibit Increased Age-Dependent Obesity3. Journal of Nutrition, 2008, 138, 1859-1865.	2.9	36
15	Acyl-CoA binding proteins interact with the acyl-CoA binding domain of mitochondrial carnitine palmitoyl transferase I. Molecular and Cellular Biochemistry, 2011, 355, 135-148.	3.1	35
16	Structural and functional interaction of fatty acids with human liver fatty acidâ€binding protein (Lâ€ <scp>FABP</scp>) T94A variant. FEBS Journal, 2014, 281, 2266-2283.	4.7	33
17	Effect of sterol carrier protein-2 gene ablation on HDL-mediated cholesterol efflux from cultured primary mouse hepatocytes. American Journal of Physiology - Renal Physiology, 2010, 299, G244-G254.	3.4	32
18	Liver fatty acid binding protein gene ablation enhances age-dependent weight gain in male mice. Molecular and Cellular Biochemistry, 2009, 324, 101-115.	3.1	31

GREGORY G MARTIN

#	Article	IF	CITATIONS
19	Overexpression of sterol carrier protein-2 differentially alters hepatic cholesterol accumulation in cholesterol-fed mice. Journal of Lipid Research, 2009, 50, 1429-1447.	4.2	30
20	Loss of intracellular lipid binding proteins differentially impacts saturated fatty acid uptake and nuclear targeting in mouse hepatocytes. American Journal of Physiology - Renal Physiology, 2012, 303, G837-G850.	3.4	30
21	Inhibitors of Fatty Acid Synthesis Induce PPARα-Regulated Fatty Acidβ-Oxidative Genes: Synergistic Roles of L-FABP and Glucose. PPAR Research, 2013, 2013, 1-22.	2.4	29
22	Impact of SCP-2/SCP-x gene ablation and dietary cholesterol on hepatic lipid accumulation. American Journal of Physiology - Renal Physiology, 2015, 309, G387-G399.	3.4	29
23	<scp>FABP</scp> â€∎ gene ablation impacts brain endocannabinoid system in male mice. Journal of Neurochemistry, 2016, 138, 407-422.	3.9	29
24	Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes. American Journal of Physiology - Renal Physiology, 2012, 302, G824-G839.	3.4	28
25	Loss of L-FABP, SCP-2/SCP-x, or both induces hepatic lipid accumulation in female mice. Archives of Biochemistry and Biophysics, 2015, 580, 41-49.	3.0	28
26	High glucose potentiates L-FABP mediated fibrate induction of PPARα in mouse hepatocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1412-1425.	2.4	25
27	<i>Fabp1</i> gene ablation inhibits highâ€fat dietâ€induced increase in brain endocannabinoids. Journal of Neurochemistry, 2017, 140, 294-306.	3.9	24
28	Liver Fatty Acid Binding Protein Geneâ€Ablation Exacerbates Weight Gain in Highâ€Fat Fed Female Mice. Lipids, 2013, 48, 435-448.	1.7	22
29	A New N-Terminal Recognition Domain in Caveolin-1 Interacts with Sterol Carrier Protein-2 (SCP-2). Biochemistry, 2007, 46, 8301-8314.	2.5	21
30	Human FABP1 T94A variant enhances cholesterol uptake. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 946-955.	2.4	21
31	Female Mice are Resistant to <i>Fabp1</i> Gene Ablationâ€Induced Alterations in Brain Endocannabinoid Levels. Lipids, 2016, 51, 1007-1020.	1.7	17
32	Loss of fatty acid binding protein-1 alters the hepatic endocannabinoid system response to a high-fat diet. Journal of Lipid Research, 2017, 58, 2114-2126.	4.2	16
33	Ablating L-FABP in SCP-2/SCP-x null mice impairs bile acid metabolism and biliary HDL-cholesterol secretion. American Journal of Physiology - Renal Physiology, 2014, 307, G1130-G1143.	3.4	15
34	NR4A1 Ligands as Potent Inhibitors of Breast Cancer Cell and Tumor Growth. Cancers, 2021, 13, 2682.	3.7	15
35	Δ9-Tetrahydrocannabinol induces endocannabinoid accumulation in mouse hepatocytes: antagonism by Fabp1 gene ablation. Journal of Lipid Research, 2018, 59, 646-657	4.2	14
36	Loss of liver FA binding protein significantly alters hepatocyte plasma membrane microdomains. Journal of Lipid Research, 2012, 53, 467-480.	4.2	13

GREGORY G MARTIN

#	Article	IF	CITATIONS
37	Impact of dietary phytol on lipid metabolism in SCP2/SCPX/L-FABP null mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 291-304.	2.4	13
38	Impact of <i>Fabp1</i> Gene Ablation on Uptake and Degradation of Endocannabinoids in Mouse Hepatocytes. Lipids, 2018, 53, 561-580.	1.7	12
39	Effect of liver fatty acid binding protein (L-FABP) gene ablation on lipid metabolism in high glucose diet (HGD) pair-fed mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 985-1004.	2.4	12
40	Relative contributions of L-FABP, SCP-2/SCP-x, or both to hepatic biliary phenotype of female mice. Archives of Biochemistry and Biophysics, 2015, 588, 25-32.	3.0	9
41	Impact of Fabp1/Scp-2/Scp-x gene ablation (TKO) on hepatic phytol metabolism in mice. Journal of Lipid Research, 2017, 58, 1153-1165.	4.2	9
42	Effect of <i>Fabp1/Scp</i> â€ <i>2/Scp</i> â€ <i>x</i> Ablation on Whole Body and Hepatic Phenotype of Phytolâ€Fed Male Mice. Lipids, 2017, 52, 385-397.	1.7	9
43	Human Liver Fatty Acid Binding Proteinâ€1 T94A Variant, Nonalcohol Fatty Liver Disease, and Hepatic Endocannabinoid System. Lipids, 2018, 53, 27-40.	1.7	9
44	Ablating both Fabp1 and Scp2/Scpx (TKO) induces hepatic phospholipid and cholesterol accumulation in high fat-fed mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 323-338.	2.4	9
45	Sterol Carrier Proteinâ€2/Sterol Carrier Proteinâ€x/Fatty Acid Binding Proteinâ€1 Ablation Impacts Response of Brain Endocannabinoid to Highâ€Fat Diet. Lipids, 2019, 54, 583-601.	1.7	9
46	Structural and Functional Interaction of Δ ⁹ -Tetrahydrocannabinol with Liver Fatty Acid Binding Protein (FABP1). Biochemistry, 2018, 57, 6027-6042.	2.5	8
47	Endocannabinoid Interaction with Human FABP1: Impact of the T94A Variant. Biochemistry, 2017, 56, 5147-5159.	2.5	8
48	The Histone Methyltransferase Gene G9A Is Regulated by Nuclear Receptor 4A1 in Alveolar Rhabdomyosarcoma Cells. Molecular Cancer Therapeutics, 2021, 20, 612-622.	4.1	7
49	Plant Alkaloid Tetrandrine Is a Nuclear Receptor 4A1 Antagonist and Inhibits Panc-1 Cell Growth In Vitro and In Vivo. International Journal of Molecular Sciences, 2022, 23, 5280.	4.1	6
50	Scp-2/Scp-x ablation in Fabp1 null mice differentially impacts hepatic endocannabinoid level depending on dietary fat. Archives of Biochemistry and Biophysics, 2018, 650, 93-102.	3.0	3
51	High Glucose and Liver Fatty Acid Binding Protein Gene Ablation Differentially Impact Whole Body and Liver Phenotype in Highâ€FatPairâ€FedMice. Lipids, 2020, 55, 309-327.	1.7	2