Luis Cumbal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2438433/publications.pdf

Version: 2024-02-01

172207 133063 3,608 67 29 59 citations h-index g-index papers 69 69 69 4324 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Arsenic Removal Using Polymer-Supported Hydrated Iron(III) Oxide Nanoparticles:Â Role of Donnan Membrane Effectâ€. Environmental Science & Technology, 2005, 39, 6508-6515.	4.6	508
2	One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Science of the Total Environment, 2012, 429, 2-35.	3.9	414
3	Polymer supported inorganic nanoparticles: characterization and environmental applications. Reactive and Functional Polymers, 2003, 54, 167-180.	2.0	225
4	Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi Journal of Biological Sciences, 2017, 24, 45-50.	1.8	221
5	Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication. Journal of Saudi Chemical Society, 2014, 18, 364-369.	2.4	145
6	Arsenic in volcanic geothermal fluids of Latin America. Science of the Total Environment, 2012, 429, 57-75.	3.9	123
7	Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the Andean blackberry leaf. Materials Chemistry and Physics, 2016, 179, 310-315.	2.0	111
8	Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi Journal of Biological Sciences, 2014, 21, 605-609.	1.8	105
9	Green Approach for Fabrication and Applications of Zinc Oxide Nanoparticles. Bioinorganic Chemistry and Applications, 2014, 2014, 1-7.	1.8	102
10	Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf. Journal of Saudi Chemical Society, 2017, 21, S475-S480.	2.4	96
11	In vitro evaluation of silver nanoparticles cytotoxicity on Hepatic cancer (Hep-G2) cell line and their antioxidant activity: Green approach for fabrication and application. Journal of Photochemistry and Photobiology B: Biology, 2016, 159, 8-13.	1.7	91
12	One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications. Materials Science and Engineering C, 2016, 62, 725-731.	3.8	86
13	Sonochemical Synthesis of Silver Nanoparticles Using Starch: A Comparison. Bioinorganic Chemistry and Applications, 2014, 2014, 1-8.	1.8	75
14	Hybrid ion exchanger supported nanocomposites: Sorption and sensing for environmental applications. Chemical Engineering Journal, 2011, 166, 923-931.	6.6	70
15	Fabrication of silver nanoplates using Nephelium lappaceum (Rambutan) peel: A sustainable approach. Journal of Molecular Liquids, 2015, 211, 476-480.	2.3	66
16	Capuli cherry-mediated green synthesis of silver nanoparticles under white solar and blue LED light. Particuology, 2016, 24, 123-128.	2.0	60
17	Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: An ecofriendly approach. Industrial Crops and Products, 2014, 58, 238-243.	2.5	53
18	Ficus carica (Fig) Fruit Mediated Green Synthesis of Silver Nanoparticles and its Antioxidant Activity: a Comparison of Thermal and Ultrasonication Approach. BioNanoScience, 2016, 6, 15-21.	1.5	48

#	Article	IF	CITATIONS
19	Characterization and application of biosynthesized iron oxide nanoparticles using Citrus paradisi peel: A sustainable approach. Inorganic Chemistry Communication, 2020, 119, 108116.	1.8	48
20	Ecofriendly synthesis of monodispersed silver nanoparticles using Andean Morti $\tilde{A}\pm 0$ berry as reductant and its photocatalytic activity. Vacuum, 2019, 160, 272-278.	1.6	46
21	Lantana camara berry for the synthesis of silver nanoparticles. Asian Pacific Journal of Tropical Biomedicine, 2015, 5, 192-195.	0.5	42
22	Biosynthesis of silver nanoparticles using Lantana camara flower extract and its application. Journal of Sol-Gel Science and Technology, 2016, 78, 285-292.	1.1	42
23	Green Synthesis of Iron Nanoparticles: Application on the Removal of Petroleum Oil from Contaminated Water and Soils. Journal of Nanotechnology, 2018, 2018, 1-8.	1.5	42
24	Sacha inchi (Plukenetia volubilis L.) shell biomass for synthesis of silver nanocatalyst. Journal of Saudi Chemical Society, 2017, 21, S293-S298.	2.4	41
25	Andean Sacha inchi (Plukenetia volubilis L.) shell biomass as new biosorbents for Pb 2+ and Cu 2+ ions. Ecological Engineering, 2016, 93, 152-158.	1.6	39
26	Ultrasound agitated phytofabrication of palladium nanoparticles using Andean blackberry leaf and its photocatalytic activity. Journal of Saudi Chemical Society, 2015, 19, 574-580.	2.4	38
27	One pot synthesis and characterization of gold nanocatalyst using Sacha inchi (Plukenetia volubilis) oil: Green approach. Journal of Photochemistry and Photobiology B: Biology, 2016, 158, 55-60.	1.7	38
28	Extracellular green synthesis of silver nanoparticles using Amazonian fruit Araza (Eugenia stipitata) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
29	Peptides conjugated to silver nanoparticles in biomedicine – a "value-added―phenomenon. Biomaterials Science, 2016, 4, 1713-1725.	2.6	34
30	Ultrasound-assisted synthesis and antibacterial activity of gallic acid-chitosan modified silver nanoparticles. Progress in Organic Coatings, 2019, 129, 229-235.	1.9	34
31	Valorization of rambutan peel for the synthesis of silver-doped titanium dioxide (Ag/TiO ₂) nanoparticles. Green Processing and Synthesis, 2016, 5, 371-377.	1.3	31
32	Mortiño (Vaccinium floribundum Kunth) berry assisted green synthesis and photocatalytic performance of Silver–Graphene nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 329, 273-279.	2.0	31
33	Biosynthesis of silver nanoparticles using lavender leaf and their applications for catalytic, sensing, and antioxidant activities. Nanotechnology Reviews, 2016, 5, .	2.6	28
34	Preparation of Fe oxide nanoparticles for environmental applications: arsenic removal. Environmental Geochemistry and Health, 2010, 32, 291-296.	1.8	27
35	Arsenic in geothermal sources at the north-central Andean region of Ecuador: concentrations and mechanisms of mobility. Environmental Earth Sciences, 2010, 61, 299-310.	1.3	26
36	Pomosynthesis And Biological Activity Of Silver Nanoparticles Using Passiflora Tripartita Fruit Extracts. Advanced Materials Letters, 2015, 6, 127-132.	0.3	26

#	Article	IF	CITATIONS
37	Microwave-Assisted Extraction and Solid-Phase Separation of Quercetin from Solid Onion (<i>Allium) Tj ETQq1 1</i>	0.784314	4 rgBT /Overl
38	Ecofriendly ultrasound-assisted rapid synthesis of gold nanoparticles using <i>Calothrix</i> algae. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016, 7, 025013.	0.7	23
39	Green Synthesis of Silver Nanoparticles Using Natural Dyes of Cochineal. Journal of Cluster Science, 2016, 27, 703-713.	1.7	21
40	Biofabrication of nanogold from the flower extracts of <i>Lantana camara</i> . IET Nanobiotechnology, 2016, 10, 154-157.	1.9	21
41	Ultrasound promoted and SiO2/CCl3COOH mediated synthesis of 2-aryl-1-arylmethyl-1H-benzimidazole derivatives in aqueous media: An eco-friendly approach. Journal of Chemical Sciences, 2014, 126, 1831-1840.	0.7	20
42	Phytosynthesis of gold nanoparticles using Andean Ajı′ (<i>Capsicum baccatum</i> L.). Cogent Chemistry, 2015, 1, 1120982.	2.5	20
43	Utilization of Persea americana (Avocado) oil for the synthesis of gold nanoparticles in sunlight and evaluation of antioxidant and photocatalytic activities. Environmental Nanotechnology, Monitoring and Management, 2018, 10, 231-237.	1.7	19
44	Andean Sacha Inchi (Plukenetia Volubilis L.) Leaf-Mediated Synthesis of Cu2O Nanoparticles: A Low-Cost Approach. Bioengineering, 2020, 7, 54.	1.6	19
45	Biosynthesis of Multicomponent Nanoparticles with Extract of Mortiño (<i>Vaccinium) Tj ETQq1 1 0.784314 rg Soils. Journal of Nanotechnology, 2018, 2018, 1-10.</i>	gBT /Overl 1.5	ock 10 Tf 50 17
46	Extracellular biofabrication of gold nanoparticles by using <i>Lantana camara</i> berry extract. Inorganic and Nano-Metal Chemistry, 2017, 47, 138-142.	0.9	16
47	Shora (<i>Capparis petiolaris</i>) fruit mediated green synthesis and application of silver nanoparticles. Green Processing and Synthesis, 2017, 6, 23-30.	1.3	15
48	Nanoparticles for Environment, Engineering, and Nanomedicine. Journal of Nanotechnology, 2019, 2019, 1-2.	1.5	14
49	Synthesis of Iron, Zinc, and Manganese Nanofertilizers, Using Andean Blueberry Extract, and Their Effect in the Growth of Cabbage and Lupin Plants. Nanomaterials, 2022, 12, 1921.	1.9	14
50	One-Pot Biosynthesis of Maghemite (Î ³ -Fe2O3) Nanoparticles in Aqueous Extract of Ficus carica Fruit and Their Application for Antioxidant and 4-Nitrophenol Reduction. Waste and Biomass Valorization, 2021, 12, 3575-3587.	1.8	13
51	Spectroscopic and morphological characterization of Nephelium lappaceum peel extract synthesized gold nanoflowers and its catalytic activity. Inorganic Chemistry Communication, 2021, 133, 108868.	1.8	13
52	Synthesis of silver nanoparticles with remediative potential using discarded yerba mate: An eco-friendly approach. Journal of Environmental Chemical Engineering, 2020, 8, 104425.	3.3	12
53	Plukenetia volubilis L. Seed flour mediated biofabrication and characterization of silver nanoparticles. Chemical Physics Letters, 2021, 781, 138993.	1.2	12
54	Renewable zinc dioxide nanoparticles and coatings. Materials Letters, 2014, 116, 282-285.	1.3	9

#	Article	IF	CITATIONS
55	Phytosynthesis of Silver Nanoparticles using Andean Cabbage: Structural Characterization and its Application. Materials Today: Proceedings, 2020, 21, 2079-2086.	0.9	8
56	Andean Capuli Fruit Derived Anisotropic Gold Nanoparticles with Antioxidant and Photocatalytic Activity. BioNanoScience, 2021, 11, 962-969.	1.5	8
57	Green Synthesis of Cuprous Oxide Nanoparticles Using Andean Capuli (Prunus serotina Ehrh. var.) Tj ETQq1 10	0.784314 rg	gBT_/Overlook
58	lonic Liquid Based Silica Tuned Silver Nanoparticles: Novel Approach for Fabrication. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1265-1271.	0.6	6
59	Retention of heavy metals from mine tailings using Technosols prepared with native soils and nanoparticles. Heliyon, 2021, 7, e07631.	1.4	6
60	Phytosynthesis, characterization and catalytic activity of Sacha inchi leaf-assisted gold nanoparticles. Chemical Papers, 2022, 76, 2855-2864.	1.0	6
61	Optimized Synthesis of Multicomponent Nanoparticles for Removing Heavy Metals from Artificial Mine Tailings. Biology and Medicine (Aligarh), 2016, 08, .	0.3	4
62	<i>Capsicum baccatum</i> (Andean Chilli)-assisted phytosynthesis of silver nanoparticles and their H ₂ O ₂ sensing ability. Particulate Science and Technology, 2022, 40, 772-780.	1,1	4
63	Ultrasound-assisted green synthesis of Urchin like palladium oxide nanoparticles using alginate and its photocatalytic application. Inorganic Chemistry Communication, 2022, 141, 109618.	1.8	4
64	Synthesis and characterization of SnO2 nanoparticles using cochineal dye. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	3
65	Single-step biogenic synthesis of silver nanoparticles using honeybee-collected pollen. Inorganic and Nano-Metal Chemistry, 0, , 1-7.	0.9	2
66	Spatio-Temporal River Contamination Measurements with Electrochemical Probes and Mobile Sensor Networks. Sustainability, 2018, 10, 1449.	1.6	1
67	A texture based image processing algorithm for nanoparticles analysis. , 2015, , .		О