Ewa Marzena Kalemba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2438374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Are Methionine Sulfoxide-Containing Proteins Related to Seed Longevity? A Case Study of Arabidopsis thaliana Dry Mature Seeds Using Cyanogen Bromide Attack and Two-Dimensional-Diagonal Electrophoresis. Plants, 2022, 11, 569.	1.6	2
2	Localization and Dynamics of the Methionine Sulfoxide Reductases MsrB1 and MsrB2 in Beech Seeds. International Journal of Molecular Sciences, 2021, 22, 402.	1.8	3
3	Nicotinamide adenine dinucleotides are associated with distinct redox control of germination in Acer seeds with contrasting physiology. PLoS ONE, 2021, 16, e0245635.	1.1	4
4	Thermotherapy and Storage Temperature Manipulations Limit the Production of Reactive Oxygen Species in Stored Pedunculate Oak Acorns. Forests, 2021, 12, 1338.	0.9	3
5	NAD(P)H Drives the Ascorbate–Glutathione Cycle and Abundance of Catalase in Developing Beech Seeds Differently in Embryonic Axes and Cotyledons. Antioxidants, 2021, 10, 2021.	2.2	5
6	Involvement of the MetO/Msr System in Two Acer Species That Display Contrasting Characteristics during Germination. International Journal of Molecular Sciences, 2020, 21, 9197.	1.8	3
7	Integration of MsrB1 and MsrB2 in the Redox Network during the Development of Orthodox and Recalcitrant Acer Seeds. Antioxidants, 2020, 9, 1250.	2.2	7
8	Peptide-Bound Methionine Sulfoxide (MetO) Levels and MsrB2 Abundance Are Differentially Regulated during the Desiccation Phase in Contrasted Acer Seeds. Antioxidants, 2020, 9, 391.	2.2	7
9	Seasonal senescence of leaves and roots of Populus trichocarpa—is the scenario the same or different?. Tree Physiology, 2020, 40, 987-1000.	1.4	11
10	NAD(P)-Driven Redox Status Contributes to Desiccation Tolerance in Acer seeds. Plant and Cell Physiology, 2020, 61, 1158-1167.	1.5	8
11	The Occurrence of Peroxiredoxins and Changes in Redox State in Acer platanoides and Acer pseudoplatanus During Seed Development. Journal of Plant Growth Regulation, 2019, 38, 298-314.	2.8	15
12	Dehydration Sensitivity at the Early Seedling Establishment Stages of the European Beech (Fagus) Tj ETQq0 0 0 i	gBT /Over	loçk 10 Tf 50
13	Regulation of Gene Expression of Methionine Sulfoxide Reductases and Their New Putative Roles in Plants. International Journal of Molecular Sciences, 2019, 20, 1309.	1.8	5
14	Ascorbic Acid—The Little-Known Antioxidant in Woody Plants. Antioxidants, 2019, 8, 645.	2.2	73
15	The effect of a doubled glutathione level on parameters affecting the germinability of recalcitrant Acer saccharinum seeds during drying. Journal of Plant Physiology, 2018, 223, 72-83.	1.6	25
16	Invasive oaks escape preâ€dispersal insect seed predation and trap enemies in their seeds. Integrative Zoology, 2018, 13, 228-237.	1.3	25
17	Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa. BMC Plant Biology, 2018, 18, 260.	1.6	21

Nitrate simultaneously enhances lipid and protein accumulation in developing yellow lupin18cotyledons cultured in vitro , but not under field conditions. Journal of Plant Physiology, 2017, 216,1.6326-34.

#	Article	IF	CITATIONS
19	Effects of abscisic acid and an osmoticum on the maturation, starch accumulation and germination of Picea spp. somatic embryos. Acta Physiologiae Plantarum, 2016, 38, 1.	1.0	19
20	Functional characterization of a dehydrin protein from Fagus sylvatica seeds using experimental and in silico approaches. Plant Physiology and Biochemistry, 2015, 97, 246-254.	2.8	13
21	Multiple Subcellular Localizations of Dehydrin-like Proteins in the Embryonic Axes of Common Beech (Fagus sylvatica L.) Seeds During Maturation and Dry Storage. Journal of Plant Growth Regulation, 2015, 34, 137-149.	2.8	10
22	The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.) seeds. Journal of Plant Physiology, 2015, 174, 147-156.	1.6	59
23	Age-related changes in protein metabolism of beech (Fagus sylvatica L.) seeds during alleviation of dormancy and in the early stage of germination. Plant Physiology and Biochemistry, 2015, 94, 114-121.	2.8	6
24	The role of oxidative stress in determining the level of viability of black poplar (Populus nigra) seeds stored at different temperatures. Functional Plant Biology, 2015, 42, 630.	1.1	14
25	Carbonylated proteins accumulated as vitality decreases during long-term storage of beech (Fagus) Tj ETQq1 1	0.784314	rgBT /Overloc 46
26	The involvement of the mitochondrial peroxiredoxin PRXIIF in defining physiological differences between orthodox and recalcitrant seeds of two Acer species. Functional Plant Biology, 2013, 40, 1005.	1.1	13
27	Association of Protective Proteins with Dehydration and Desiccation of Orthodox and Recalcitrant Category Seeds of Three Acer Genus Species. Journal of Plant Growth Regulation, 2012, 31, 351-362.	2.8	28
28	The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. Journal of Plant Physiology, 2011, 168, 220-225.	1.6	61
29	Desiccation tolerance acquisition in developing beech (Fagus sylvatica L.) seeds: the contribution of dehydrin-like protein. Trees - Structure and Function, 2009, 23, 305-315.	0.9	18
30	Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage. Journal of Plant Physiology, 2009, 166, 1381-1390.	1.6	30
31	Changes in late embryogenesis abundant proteins and a small heat shock protein during storage of beech (Fagus sylvatica L.) seeds. Environmental and Experimental Botany, 2008, 63, 274-280.	2.0	36
32	Growth regulators and guaiacol peroxidase activity during the induction phase of somatic embryogenesis in Picea species. Dendrobiology, 0, 69, 77-86.	0.6	5