Dong Hyun Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2438270/publications.pdf Version: 2024-02-01

DONG HYUN KIM

#	Article	IF	CITATIONS
1	Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Applied Catalysis A: General, 2004, 278, 25-35.	4.3	189
2	Kinetics of selective CO oxidation in hydrogen-rich mixtures on Pt/alumina catalysts. Applied Catalysis A: General, 2002, 224, 27-38.	4.3	134
3	A CuO-CeO2 Mixed-Oxide Catalyst for CO Clean-Up by Selective Oxidation in Hydrogen-Rich Mixtures. Catalysis Letters, 2003, 86, 107-112.	2.6	125
4	Steam reforming and oxidative steam reforming of methanol over CuO–CeO2 catalysts. International Journal of Hydrogen Energy, 2009, 34, 7648-7655.	7.1	102
5	Absorption of CO ₂ into Aqueous Potassium Salt Solutions of <scp>l</scp> -Alanine and <scp>l</scp> -Proline. Energy & Fuels, 2012, 26, 3910-3918.	5.1	70
6	Performance of copper–ceria catalysts for water gas shift reaction in medium temperature range. International Journal of Hydrogen Energy, 2009, 34, 1336-1341.	7.1	65
7	Linear driving force formulas for diffusion and reaction in porous catalysts. AICHE Journal, 1989, 35, 343-346.	3.6	61
8	Cu–ZrO2 Catalysts for Water-gas-shift Reaction at Low Temperatures. Catalysis Letters, 2005, 105, 157-161.	2.6	57
9	Static decouplers for control of multivariable processes. AICHE Journal, 2005, 51, 2712-2720.	3.6	53
10	Steam reforming of methanol over structured catalysts prepared by electroless deposition of Cu and Zn on anodically oxidized alumina. International Journal of Hydrogen Energy, 2015, 40, 2509-2517.	7.1	27
11	A robust iterative method of computing effectiveness factors in porous catalysts. Chemical Engineering Science, 2004, 59, 2253-2263.	3.8	23
12	High-order approximations for noncyclic and cyclic adsorption in a biporous adsorbent. Korean Journal of Chemical Engineering, 1999, 16, 69-74.	2.7	21
13	Multiple steady states in the oxidative steam reforming of methanol. Chemical Engineering Journal, 2018, 338, 752-763.	12.7	20
14	Single effective diffusivities for dynamic adsorption in bidisperse adsorbents. AICHE Journal, 1990, 36, 302-306.	3.6	18
15	Steam reforming of methanol over copper loaded anodized aluminum oxide (AAO) prepared through electrodeposition. Journal of Power Sources, 2014, 268, 88-95.	7.8	16
16	Hydrogen production by oxidative steam reforming of methanol over anodic aluminum oxide-supported Cu-Zn catalyst. International Journal of Hydrogen Energy, 2019, 44, 9873-9882.	7.1	15
17	Preferential CO oxidation over CuO–CeO2 in excess hydrogen: Effectiveness factors of catalyst particles and temperature window for CO removal. International Journal of Hydrogen Energy, 2013, 38, 4429-4436.	7.1	14
18	Anodic aluminum oxide supported Cu-Zn catalyst for oxidative steam reforming of methanol. Korean Journal of Chemical Engineering, 2019, 36, 368-376.	2.7	14

DONG HYUN КІМ

#	Article	IF	CITATIONS
19	Approximations for unsteadyâ€state diffusion and reaction in porous catalyst and their application to packedâ€bed reactor. AICHE Journal, 2008, 54, 2423-2431.	3.6	12
20	Linear driving force formulas for unsteadyâ€state diffusion and reaction in slab, cylinder and sphere catalyst. AICHE Journal, 2009, 55, 834-839.	3.6	12
21	High-order approximations for unsteady-state diffusion and reaction in slab, cylinder and sphere catalyst. Korean Journal of Chemical Engineering, 2012, 29, 42-48.	2.7	10
22	Comparison of CuO-MO x (M=Ce, Zn, Cr and Zr) catalysts in various water-gas shift reactions. Korean Journal of Chemical Engineering, 2014, 31, 1564-1569.	2.7	10
23	Global approximations of unsteadyâ€state adsorption, diffusion, and reaction in a porous catalyst. AICHE Journal, 2013, 59, 2540-2548.	3.6	9
24	Temperature oscillations in methanol partial oxidation reactor for the production of hydrogen. Korean Journal of Chemical Engineering, 2013, 30, 790-795.	2.7	7
25	A simple formula for estimation of the effectiveness factor in porous catalysts. AICHE Journal, 2006, 52, 3631-3635.	3.6	5
26	Hydrogen production by methanol autothermal reforming with high conductivity honeycomb supports. Studies in Surface Science and Catalysis, 2006, , 685-688.	1.5	5
27	Wiener Model and Extremum Seeking Control for a CO Preferential Oxidation Reactor with the CuO-CeO2 catalyst. IFAC-PapersOnLine, 2015, 48, 574-579.	0.9	4
28	Effectiveness factor approximations for multiple steady states in porous catalysts. Chemical Engineering Science, 2007, 62, 2179-2186.	3.8	2
29	A halfâ€order approximation for the adsorption dynamics in a porous particle. AICHE Journal, 2011, 57, 2282-2286.	3.6	1
30	An improved linear formula for cyclic adsorption, diffusion and reaction in a catalyst. Korean Journal of Chemical Engineering, 2016, 33, 1186-1191.	2.7	1
31	Effectiveness factor approximation by using a perturbation method. Studies in Surface Science and Catalysis, 2006, 159, 705-708.	1.5	0
32	Half-order approximation for the adsorption dynamics in a particle. , 2010, , .		0
33	Analytic Pade-like approximations of exp(–sqrt(s)) for simulations of diffusion processes in the semi-infinite geometry. Chemical Engineering Communications, 2020, 207, 194-2 <u>02.</u>	2.6	0