Marina de Bernard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2438088/publications.pdf

Version: 2024-02-01

82 papers 5,088 citations

76326 40 h-index 70 g-index

84 all docs 84 docs citations

84 times ranked 5021 citing authors

#	Article	IF	CITATIONS
1	Macrophage-Mediated Melanoma Reduction after HP-NAP Treatment in a Zebrafish Xenograft Model. International Journal of Molecular Sciences, 2022, 23, 1644.	4.1	7
2	ADPâ€heptose enables <i>HelicobacterÂpylori</i> to exploit macrophages as a survival niche by suppressing antigenâ€presenting HLAâ€H expression. FEBS Letters, 2021, 595, 2160-2168.	2.8	7
3	Tumor Cells and the Extracellular Matrix Dictate the Pro-Tumoral Profile of Macrophages in CRC. Cancers, 2021, 13, 5199.	3.7	6
4	The immune receptor CD300e negatively regulates T cell activation by impairing the STAT1-dependent antigen presentation. Scientific Reports, 2020, 10, 16501.	3.3	16
5	Supercritical carbon dioxide combined with high power ultrasound as innovate drying process for chicken breast. Journal of Supercritical Fluids, 2019, 147, 24-32.	3.2	28
6	The lipoprotein <scp>HP1454</scp> of <i>Helicobacter pylori</i> regulates <scp>T</scp> â€cell response by shaping <scp>T</scp> â€cell receptor signalling. Cellular Microbiology, 2019, 21, e13006.	2.1	27
7	Simulating Inflammation in a Wound Microenvironment Using a Dermal Woundâ€onâ€aâ€Chip Model. Advanced Healthcare Materials, 2019, 8, e1801307.	7.6	46
8	Helicobacter pylori Dampens HLA-II Expression on Macrophages via the Up-Regulation of miRNAs Targeting CIITA. Frontiers in Immunology, 2019, 10, 2923.	4.8	22
9	The Helicobacter cinaedi antigen CAIP participates in atherosclerotic inflammation by promoting the differentiation of macrophages in foam cells. Scientific Reports, 2017, 7, 40515.	3.3	24
10	Helicobacter pylori antigenic Lpp20 is a structural homologue of Tipα and promotes epithelial-mesenchymal transition. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3263-3271.	2.4	19
11	Helicobacter pylori Affects the Antigen Presentation Activity of Macrophages Modulating the Expression of the Immune Receptor CD300E through miR-4270. Frontiers in Immunology, 2017, 8, 1288.	4.8	45
12	Treponema pallidum (syphilis) antigen TpF1 induces angiogenesis through the activation of the IL-8 pathway. Scientific Reports, 2016, 6, 18785.	3.3	27
13	A pH-sensitive stearoyl-PEG-poly(methacryloyl sulfadimethoxine)-decorated liposome system for protein delivery: An application for bladder cancer treatment. Journal of Controlled Release, 2016, 238, 31-42.	9.9	75
14	Let-7c down-regulation in <i>Helicobacter pylori</i> -related gastric carcinogenesis. Oncotarget, 2016, 7, 4915-4924.	1.8	26
15	Evaluation of the Efficacy of the H. pylori Protein HP-NAP as a Therapeutic Tool for Treatment of Bladder Cancer in an Orthotopic Murine Model. Journal of Visualized Experiments, 2015, , e52743.	0.3	4
16	BAFFling Autoimmune Disorders and Helicobacter pylori Disease: The Interplay between BAFF and the Th17 Response. Clinical Immunology, Endocrine and Metabolic Drugs, 2015, 2, 4-5.	0.3	0
17	Cytokine BAFF Released by Helicobacter pylori–Infected Macrophages Triggers the Th17 Response in Human Chronic Gastritis. Journal of Immunology, 2014, 193, 5584-5594.	0.8	62
18	Helicobacter pylori secreted peptidyl prolyl cis, trans-isomerase drives Th17 inflammation in gastric adenocarcinoma. Internal and Emergency Medicine, 2014, 9, 303-309.	2.0	118

#	Article	IF	Citations
19	Tollâ€ike receptors hit calcium. EMBO Reports, 2014, 15, 468-469.	4.5	5
20	Pathogenesis of <i>Helicobacter pylori</i> Infection. Helicobacter, 2014, 19, 11-18.	3.5	42
21	The C2 fragment from <i>Neisseria meningitidis</i> antigen NHBA increases endothelial permeability by destabilizing adherens junctions. Cellular Microbiology, 2014, 16, 925-937.	2.1	21
22	Cerebrospinal Fluid T-Regulatory Cells Recognize Borrelia Burgdorferi Napa in Chronic Lyme Borreliosis. International Journal of Immunopathology and Pharmacology, 2013, 26, 907-915.	2.1	4
23	Orchestration of Inflammation and Adaptive Immunity in <i>Borrelia burgdorferi</i> àê"Induced Arthritis by Neutrophilâ€Activating Protein A. Arthritis and Rheumatism, 2013, 65, 1232-1242.	6.7	32
24	<i>Helicobacter Pylori</i> HP0175 Promotes the Production of IL-23, IL-6, IL- 1^2 and TGF- 1^2 . European Journal of Inflammation, 2013, 11, 261-268.	0.5	7
25	Triggering of Inflammasome by Aggregated α–Synuclein, an Inflammatory Response in Synucleinopathies. PLoS ONE, 2013, 8, e55375.	2.5	465
26	<i>Chlamydophila pneumoniae</i> phospholipase D (CpPLD) drives Th17 inflammation in human atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1222-1227.	7.1	53
27	Autoimmune gastritis: histology phenotype and <scp>OLGA</scp> staging. Alimentary Pharmacology and Therapeutics, 2012, 35, 1460-1466.	3.7	101
28	HP-NAP inhibits the growth of bladder cancer in mice by activating a cytotoxic Th1 response. Cancer Immunology, Immunotherapy, 2012, 61, 31-40.	4.2	46
29	HP-NAP new therapy for bladder cancer: numquam periculum sine periculo vincitur. Cancer Immunology, Immunotherapy, 2012, 61, 447-448.	4.2	O
30	Tumor-associated macrophages as major source of APRIL in gastric MALT lymphoma. Blood, 2011, 117, 6612-6616.	1.4	55
31	MicroRNA expression profiling in human Barrett's carcinogenesis. International Journal of Cancer, 2011, 129, 1661-1670.	5.1	100
32	TpF1 from <i>Treponema pallidum</i> Activates Inflammasome and Promotes the Development of Regulatory T Cells. Journal of Immunology, 2011, 187, 1377-1384.	0.8	44
33	Structure and immunomodulatory property relationship in NapA of Borrelia burgdorferi. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 2191-2197.	2.3	12
34	Endosome–mitochondria juxtaposition during apoptosis induced by H. pylori VacA. Cell Death and Differentiation, 2010, 17, 1707-1716.	11.2	80
35	Helicobacter pylori-derived neutrophil-activating protein increases the lifespan of monocytes and neutrophils. Cellular Microbiology, 2010, 12, 754-764.	2.1	18
36	The effect of Helicobacter pylori on asthma and allergy. Journal of Asthma and Allergy, 2010, 3, 139.	3.4	42

#	Article	IF	Citations
37	To treat or not to treatHelicobacter pylorito benefit asthma patients. Expert Review of Respiratory Medicine, 2010, 4, 147-150.	2.5	11
38	The immune modulating activity of the Helicobacter pylori HP-NAP: Friend or foe?. Toxicon, 2010, 56, 1186-1192.	1.6	60
39	The Vibrio cholerae Cytolysin Promotes Chloride Secretion from Intact Human Intestinal Mucosa. PLoS ONE, 2009, 4, e5074.	2.5	32
40	vOX2 glycoprotein of human herpesvirus 8 modulates human primary macrophages activity. Journal of Cellular Physiology, 2009, 219, 698-706.	4.1	25
41	Reply to letter by Nardelli and Schell commenting on the pathogenesis of lyme arthritis. Arthritis and Rheumatism, 2009, 60, 2205-2205.	6.7	3
42	<i>Helicobacter pylori</i> , asthma and allergy. FEMS Immunology and Medical Microbiology, 2009, 56, 1-8.	2.7	53
43	Oxidative DNA damage in gastric cancer: CagA status and OGG1 gene polymorphism. International Journal of Cancer, 2008, 123, 51-55.	5.1	61
44	<i>Borrelia burgdorferi</i> NapA–driven Th17 cell inflammation in lyme arthritis. Arthritis and Rheumatism, 2008, 58, 3609-3617.	6.7	93
45	The Vibrio cholerae cytolysin promotes activation of mast cell (T helper 2) cytokine production. Cellular Microbiology, 2008, 10, 899-907.	2.1	8
46	The neutrophil-activating protein of <i>Helicobacter pylori</i> down-modulates Th2 inflammation in ovalbumin-induced allergic asthma. Cellular Microbiology, 2008, 10, 2355-2363.	2.1	100
47	Immunosuppression of TH2 responses in Trichinella spiralis infection by Helicobacter pylori neutrophil-activating protein. Journal of Allergy and Clinical Immunology, 2008, 122, 908-913.e5.	2.9	46
48	The Neutrophil-Activating Protein of <i>Helicobacter pylori</i> Crosses Endothelia to Promote Neutrophil Adhesion In Vivo. Journal of Immunology, 2007, 178, 1312-1320.	0.8	87
49	IFN-Î ³ and R-848 Dependent Activation of Human Monocyte-Derived Dendritic Cells by <i>Neisseria meningitidis</i> Adhesin A. Journal of Immunology, 2007, 179, 3904-3916.	0.8	25
50	VacA and HP-NAP, Ying and Yang of Helicobacter pylori-associated gastric inflammation. Clinica Chimica Acta, 2007, 381, 32-38.	1.1	24
51	The concerted action of the Helicobacter pylori cytotoxin VacA and of the v-ATPase proton pump induces swelling of isolated endosomes. Cellular Microbiology, 2007, 9, 1481-1490.	2.1	42
52	The neutrophil-activating protein ofHelicobacter pylori(HP-NAP) as an immune modulating agent. FEMS Immunology and Medical Microbiology, 2007, 50, 157-164.	2.7	88
53	The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses. Journal of Clinical Investigation, 2006, 116, 1092-1101.	8.2	280
54	A Helicobacter pylori Vacuolating Toxin Mutant That Fails To Oligomerize Has a Dominant Negative Phenotype. Infection and Immunity, 2006, 74, 1786-1794.	2.2	34

#	Article	lF	CITATIONS
55	The Helicobacter pylori VacA cytotoxin activates RBL-2H3 cells by inducing cytosolic calcium oscillations. Cellular Microbiology, 2005, 7, 191-198.	2.1	41
56	Glibenclamide Stimulates Fluid Secretion in Rodent Cholangiocytes Through a Cystic Fibrosis Transmembrane Conductance Regulator-Independent Mechanism. Gastroenterology, 2005, 129, 220-233.	1.3	24
57	The multiple cellular activities of the VacA cytotoxin of Helicobacter pylori. International Journal of Medical Microbiology, 2004, 293, 589-597.	3.6	31
58	Molecular and cellular mechanisms of action of the vacuolating cytotoxin (VacA) and neutrophil-activating protein (HP-NAP) virulence factors of Helicobacter pylori. Microbes and Infection, 2003, 5, 715-721.	1.9	97
59	Immunosuppressive and Proinflammatory Activities of the VacA Toxin of Helicobacter pylori. Journal of Experimental Medicine, 2003, 198, 1767-1771.	8.5	33
60	Inhibition of Intracellular Cholesterol Transport Alters Presenilin Localization and Amyloid Precursor Protein Processing in Neuronal Cells. Journal of Neuroscience, 2002, 22, 1679-1689.	3.6	232
61	The neutrophil-activating protein (HP-NAP) of <i>Helicobacter pylori </i> is a potent stimulant of mast cells. European Journal of Immunology, 2002, 32, 671-676.	2.9	34
62	Cell vacuolization induced by Helicobacter pylori VacA cytotoxin does not depend on late endosomal SNAREs+. Cellular Microbiology, 2002, 4, 11-18.	2.1	28
63	The Vibrio cholerae haemolysin anion channel is required for cell vacuolation and death. Cellular Microbiology, 2002, 4, 397-409.	2.1	39
64	The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a potent stimulant of mast cells. European Journal of Immunology, 2002, 32, 671.	2.9	76
65	Virulence factors of Helicobacter pylori. International Journal of Medical Microbiology, 2001, 290, 647-658.	3.6	44
66	Bacterial toxins with intracellular protease activity. Clinica Chimica Acta, 2000, 291, 189-199.	1.1	30
67	Molecular and cellular activities of Helicobacter pyloripathogenic factors. FEBS Letters, 1999, 452, 16-21.	2.8	50
68	Helicobacter pylori Vacuolating Toxin Forms Anion-Selective Channels in Planar Lipid Bilayers: Possible Implications for the Mechanism of Cellular Vacuolation. Biophysical Journal, 1999, 76, 1401-1409.	0.5	145
69	3D imaging of the 58 kda cell binding subunit of the Helicobacter pylori cytotoxin. Journal of Molecular Biology, 1999, 290, 459-470.	4.2	77
70	TPA and butyrate increase cell sensitivity to the vacuolating toxin ofHelicobacter pylori. FEBS Letters, 1998, 436, 218-222.	2.8	12
71	The Acid Activation ofHelicobacter pyloriToxin VacA: Structural and Membrane Binding Studies. Biochemical and Biophysical Research Communications, 1998, 248, 334-340.	2.1	84
72	Cell vacuolization induced by Helicobacter pylori VacA toxin: cell line sensitivity and quantitative estimation. Toxicology Letters, 1998, 99, 109-115.	0.8	31

#	Article	IF	Citations
73	The m2 form of the Helicobacter pylori cytotoxin has cell type-specific vacuolating activity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10212-10217.	7.1	184
74	Identification of the <i>Helicobacter pylori</i> VacA Toxin Domain Active in the Cell Cytosol. Infection and Immunity, 1998, 66, 6014-6016.	2.2	102
75	The small GTP binding protein rab7 is essential for cellular vacuolation induced by Helicobacter pylori cytotoxin. EMBO Journal, 1997, 16, 15-24.	7.8	203
76	Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Molecular Microbiology, 1997, 26, 665-674.	2.5	128
77	Low pH Activates the Vacuolating Toxin of Helicobacter pylori, Which Becomes Acid and Pepsin Resistant. Journal of Biological Chemistry, 1995, 270, 23937-23940.	3.4	197
78	Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 9720-9724.	7.1	232
79	Bafilomycin A1 inhibits Helicobacter pylori-induced vacuolization of HeLa cells. Molecular Microbiology, 1993, 7, 323-327.	2.5	134
80	Cell vacuolization induced byHelicobacter pylori: Inhibition by bafilomycins A1, B1, C1 and D. FEMS Microbiology Letters, 1993, 113, 155-159.	1.8	28
81	Cell vacuolization induced by Helicobacter pylori: Inhibition by bafilomycins A1, B1, C1 and D. FEMS Microbiology Letters, 1993, 113, 155-159.	1.8	1
82	HP-NAP of Helicobacter pylori: The Power of the Immunomodulation. Frontiers in Immunology, 0, 13, .	4.8	11