Sabrina Antonello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2437891/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atomically Precise Metal Nanoclusters: Novel Building Blocks for Hierarchical Structures. Chemistry - A European Journal, 2021, 27, 30-38.	3.3	22
2	Isolation of the Au ₁₄₅ (SR) ₆₀ X compound (R = <i>n</i> -butyl, <i>n</i> -pentyl; X) Tj l icosahedral Au ₁₄₄ (SR) ₆₀ compound. Nanoscale, 2021, 13, 15394-15402.	ETQq0 0 0 5.6	rgBT /Overlock 3
3	Electron Transfer in Films of Atomically Precise Gold Nanoclusters. Chemistry of Materials, 2021, 33, 4177-4187.	6.7	10
4	Electrochemically induced electron transfer through molecular bridges. Current Opinion in Electrochemistry, 2021, 28, 100700.	4.8	2
5	Insights into the Distance Dependence of Electron Transfer through Conformationally Constrained Peptides. ChemElectroChem, 2020, 7, 1225-1237.	3.4	8
6	Understanding and controlling the efficiency of Au ₂₄ M(SR) ₁₈ nanoclusters as singlet-oxygen photosensitizers. Chemical Science, 2020, 11, 3427-3440.	7.4	24
7	Metal Doping of Au ₂₅ (SR) ₁₈ [–] Clusters: Insights and Hindsights. Journal of the American Chemical Society, 2019, 141, 16033-16045.	13.7	120
8	Atomically precise Au ₁₄₄ (SR) ₆₀ nanoclusters (R = Et, Pr) are capped by 12 distinct ligand types of 5-fold equivalence and display gigantic diastereotopic effects. Chemical Science, 2018, 9, 8796-8805.	7.4	30
9	Gold Fusion: From Au ₂₅ (SR) ₁₈ to Au ₃₈ (SR) ₂₄ , the Most Unexpected Transformation of a Very Stable Nanocluster. ACS Nano, 2018, 12, 7057-7066.	14.6	69
10	From Blue to Green: Fine-Tuning of Photoluminescence and Electrochemiluminescence in Bifunctional Organic Dyes. Journal of the American Chemical Society, 2017, 139, 2060-2069.	13.7	73
11	Molecular electrochemistry of monolayer-protected clusters. Current Opinion in Electrochemistry, 2017, 2, 18-25.	4.8	29
12	Electrocrystallization of Monolayer-Protected Gold Clusters: Opening the Door to Quality, Quantity, and New Structures. Journal of the American Chemical Society, 2017, 139, 4168-4174.	13.7	70
13	Magnetic Ordering in Gold Nanoclusters. ACS Omega, 2017, 2, 2607-2617.	3.5	69
14	Insights into the Interface Between the Electrolytic Solution and the Gold Core in Molecular Au ₂₅ Clusters. ChemElectroChem, 2016, 3, 1237-1244.	3.4	21
15	Exploring Collective Substituent Effects: Dependence of the Lifetime of Charged States of Au ₂₅ (SC _n H _{2n+1}) ₁₈ Nanoclusters on the Length of the Thiolate Ligands. Electroanalysis, 2016, 28, 2771-2776.	2.9	14
16	Vibrational Coupling Modulation in <i>n-</i> Alkanethiolate Protected Au ₂₅ (SR) ₁₈ ⁰ Clusters. Journal of Physical Chemistry C, 2016, 120, 25378-25386.	3.1	20
17	A magnetic look into the protecting layer of Au ₂₅ clusters. Chemical Science, 2016, 7, 6910-6918.	7.4	33
18	Dipole Moment Effect on the Electrochemical Desorption of Self-Assembled Monolayers of 310	3.4	2

-Helicogenic Peptides on Gold. ChemElectroChem, 2016, 3, 1964-1964.

SABRINA ANTONELLO

#	Article	IF	CITATIONS
19	Dipole Moment Effect on the Electrochemical Desorption of Selfâ€Assembled Monolayers of 3 ₁₀ â€Helicogenic Peptides on Gold. ChemElectroChem, 2016, 3, 2063-2070.	3.4	10
20	Gold Nanowired: A Linear (Au ₂₅) _{<i>n</i>} Polymer from Au ₂₅ Molecular Clusters. ACS Nano, 2014, 8, 8505-8512.	14.6	146
21	Au ₂₅ (SEt) ₁₈ , a Nearly Naked Thiolate-Protected Au ₂₅ Cluster: Structural Analysis by Single Crystal X-ray Crystallography and Electron Nuclear Double Resonance. ACS Nano, 2014, 8, 3904-3912.	14.6	145
22	Electron Transfer through 3D Monolayers on Au ₂₅ Clusters. ACS Nano, 2014, 8, 2788-2795.	14.6	80
23	Interplay of Charge State, Lability, and Magnetism in the Molecule-like Au ₂₅ (SR) ₁₈ Cluster. Journal of the American Chemical Society, 2013, 135, 15585-15594.	13.7	203
24	Conformationally Constrained Functional Peptide Monolayers for the Controlled Display of Bioactive Carbohydrate Ligands. Langmuir, 2013, 29, 8187-8192.	3.5	17
25	Effect of Orientation of the Peptide-Bridge Dipole Moment on the Properties of Fullerene–Peptide–Radical Systems. Journal of the American Chemical Society, 2012, 134, 10628-10637.	13.7	32
26	Electron transfer catalysis with monolayer protected Au25 clusters. Nanoscale, 2012, 4, 5333.	5.6	62
27	Effect of the Charge State (<i>z</i> = â^1, 0, +1) on the Nuclear Magnetic Resonance of Monodisperse Au ₂₅ [S(CH ₂) ₂ Ph] ₁₈ ^z Clusters. Analytical Chemistry, 2011, 83, 6355-6362.	6.5	124
28	Dependence of nonadiabatic intramolecular dissociative electron transfers on stereochemistry and driving force. Journal of Electroanalytical Chemistry, 2011, 660, 234-242.	3.8	6
29	Molecular Electron-Transfer Properties of Au ₃₈ Clusters. Journal of the American Chemical Society, 2007, 129, 9836-9837.	13.7	82
30	Electron Transfer to Sulfides and Disulfides: Intrinsic Barriers and Relationship between Heterogeneous and Homogeneous Electronâ€Transfer Kinetics. Chemistry - A European Journal, 2007, 13, 7983-7995.	3.3	27
31	Gold Nanoclusters Protected by Conformationally Constrained Peptides. Journal of the American Chemical Society, 2006, 128, 326-336.	13.7	125
32	Double-Layer Correction for Electron-Transfer Kinetics at Glassy Carbon and Mercury Electrodes inN,N-Dimethylformamide. Electroanalysis, 2006, 18, 363-370.	2.9	34
33	Double-Layer Correction for Electron-Transfer Kinetics at Glassy Carbon and Mercury Electrodes in N,N-Dimethylformamide. ECS Meeting Abstracts, 2006, , .	0.0	1
34	Evidence Against the Hopping Mechanism as an Important Electron Transfer Pathway for Conformationally Constrained Oligopeptides. Journal of the American Chemical Society, 2005, 127, 492-493.	13.7	116
35	Intramolecular dissociative electron transfer. Chemical Society Reviews, 2005, 34, 418.	38.1	72
36	Understanding Electron Transfer across Negatively-Charged Aib Oligopeptides. Journal of Physical Chemistry B, 2005, 109, 1023-1033.	2.6	31

SABRINA ANTONELLO

#	Article	IF	CITATIONS
37	Synthesis and Characterization of a Series of Homooligopeptide Peroxyesters. Organic Letters, 2004, 6, 2753-2756.	4.6	7
38	Formation and Cleavage of Aromatic Disulfide Radical Anions. Journal of the American Chemical Society, 2003, 125, 14905-14916.	13.7	103
39	Anomalous Distance Dependence of Electron Transfer across Peptide Bridges. Journal of the American Chemical Society, 2003, 125, 2874-2875.	13.7	100
40	Theoretical and Electrochemical Analysis of Dissociative Electron Transfers Proceeding through Formation of Loose Radical Anion Species:  Reduction of Symmetrical and Unsymmetrical Disulfides. Journal of the American Chemical Society, 2002, 124, 7529-7538.	13.7	118
41	Insights into the Free-Energy Dependence of Intramolecular Dissociative Electron Transfers. Journal of the American Chemical Society, 2002, 124, 11503-11513.	13.7	40
42	Serendipitous Discovery of Peptide Dialkyl Peroxides. Helvetica Chimica Acta, 2002, 85, 3099-3112.	1.6	15
43	Intramolecular, Intermolecular, and Heterogeneous Nonadiabatic Dissociative Electron Transfer to Peresters. Journal of the American Chemical Society, 2001, 123, 9577-9584.	13.7	56
44	The Role and Relevance of the Transfer Coefficient α in the Study of Dissociative Electron Transfers: Concepts and Examples from the Electroreduction of Perbenzoates. Journal of the American Chemical Society, 1999, 121, 9668-9676.	13.7	132
45	Evidence for Large Inner Reorganization Energies in the Reduction of Diaryl Disulfides:Â Toward a Mechanistic Link between Concerted and Stepwise Dissociative Electron Transfers?. Journal of the American Chemical Society, 1999, 121, 1750-1751.	13.7	79
46	Dependence of Intramolecular Dissociative Electron Transfer Rates on Driving Force in Donorâ^'Spacerâ^'Acceptor Systems. Journal of the American Chemical Society, 1998, 120, 5713-5722.	13.7	55
47	Electroreduction of Dialkyl Peroxides. Activationâ d'Driving Force Relationships and Bond Dissociation Free Energies1a. Journal of the American Chemical Society, 1997, 119, 9541-9549.	13.7	153
48	Evidence for the Transition between Concerted and Stepwise Heterogeneous Electron Transferâ^'Bond Fragmentation Mechanisms. Journal of the American Chemical Society, 1997, 119, 12595-12600.	13.7	90