Jincan Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2437811/publications.pdf Version: 2024-02-01

ΙΝΟΛΝ ΚΑΝΟ

#	Article	IF	CITATIONS
1	Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation. Fuel, 2022, 309, 122105.	6.4	44
2	lridium boosts the selectivity and stability of cobalt catalysts for syngas to liquid fuels. CheM, 2022, 8, 1050-1066.	11.7	26
3	Selective Transformation of Methanol to Ethanol in the Presence of Syngas over Composite Catalysts. ACS Catalysis, 2022, 12, 8451-8461.	11.2	9
4	Synthesis of hierarchical SAPO-34 to improve the catalytic performance of bifunctional catalysts for syngas-to-olefins reactions. Journal of Catalysis, 2021, 394, 181-192.	6.2	38
5	Functionalized Carbon Materials in Syngas Conversion. Small, 2021, 17, e2007527.	10.0	29
6	Selective hydrogenation of CO2 and CO into olefins over Sodium- and Zinc-Promoted iron carbide catalysts. Journal of Catalysis, 2021, 395, 350-361.	6.2	58
7	Gallium nitride catalyzed the direct hydrogenation of carbon dioxide to dimethyl ether as primary product. Nature Communications, 2021, 12, 2305.	12.8	45
8	The active sites of Cu–ZnO catalysts for water gas shift and CO hydrogenation reactions. Nature Communications, 2021, 12, 4331.	12.8	83
9	Selective Hydrogenation of CO ₂ to Ethanol over Sodium-Modified Rhodium Nanoparticles Embedded in Zeolite Silicalite-1. Journal of Physical Chemistry C, 2021, 125, 24429-24439.	3.1	31
10	Functionalized Carbon Materials in Syngas Conversion (Small 48/2021). Small, 2021, 17, 2170256.	10.0	6
11	Highly Active ZnO-ZrO ₂ Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide. ACS Catalysis, 2020, 10, 302-310.	11.2	216
12	Direct conversion of syngas into aromatics over a bifunctional catalyst: inhibiting net CO ₂ release. Chemical Communications, 2020, 56, 5239-5242.	4.1	30
13	Tandem Catalysis for Hydrogenation of CO and CO ₂ to Lower Olefins with Bifunctional Catalysts Composed of Spinel Oxide and SAPO-34. ACS Catalysis, 2020, 10, 8303-8314.	11.2	157
14	Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis. Nature Communications, 2020, 11, 827.	12.8	156
15	Tuning the interfaces of Co–Co2C with sodium and its relation to the higher alcohol production in Fischer–Tropsch synthesis. Journal of Materials Science, 2020, 55, 9037-9047.	3.7	10
16	Ligand-Controlled Photocatalysis of CdS Quantum Dots for Lignin Valorization under Visible Light. ACS Catalysis, 2019, 9, 8443-8451.	11.2	128
17	Carbon nanotube-supported bimetallic Cu-Fe catalysts for syngas conversion to higher alcohols. Molecular Catalysis, 2019, 479, 110610.	2.0	15
18	New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO ₂ into hydrocarbon chemicals and fuels. Chemical Society Reviews, 2019, 48, 3193-3228.	38.1	742

Jincan Kang

#	Article	IF	CITATIONS
19	Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nature Communications, 2019, 10, 892.	12.8	446
20	Selective Conversion of Syngas to Aromatics over a Moâ^'ZrO ₂ /Hâ€ZSMâ€5 Bifunctional Catalyst. ChemCatChem, 2019, 11, 1681-1688.	3.7	50
21	Beyond Cars: Fischerâ€Tropsch Synthesis for Nonâ€Automotive Applications. ChemCatChem, 2019, 11, 1412-1424.	3.7	38
22	Oxidative Dehydrogenation of Propane to Propylene in the Presence of HCl Catalyzed by CeO ₂ and NiO-Modified CeO ₂ Nanocrystals. ACS Catalysis, 2018, 8, 4902-4916.	11.2	95
23	Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins <i>via</i> methanol/dimethyl ether intermediates. Chemical Science, 2018, 9, 4708-4718.	7.4	208
24	Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa ₂ O ₄ and SAPO-34. Chemical Communications, 2018, 54, 140-143.	4.1	265
25	Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether. Angewandte Chemie - International Edition, 2018, 57, 12012-12016.	13.8	142
26	Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether. Angewandte Chemie, 2018, 130, 12188-12192.	2.0	17
27	Reaction coupling as a promising methodology for selective conversion of syngas into hydrocarbons beyond Fischer-Tropsch synthesis. Science China Chemistry, 2017, 60, 1382-1385.	8.2	15
28	Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics. Catalysis Science and Technology, 2017, 7, 3598-3612.	4.1	54
29	Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability. CheM, 2017, 3, 334-347.	11.7	377
30	Advances in Catalysis for Syngas Conversion to Hydrocarbons. Advances in Catalysis, 2017, , 125-208.	0.2	64
31	Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon–Carbon Coupling. Angewandte Chemie - International Edition, 2016, 55, 4725-4728.	13.8	468
32	Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon–Carbon Coupling. Angewandte Chemie, 2016, 128, 4803-4806.	2.0	115
33	Impact of Hydrogenolysis on the Selectivity of the Fischer–Tropsch Synthesis: Diesel Fuel Production over Mesoporous Zeolite‥â€Supported Cobalt Nanoparticles. Angewandte Chemie - International Edition, 2015, 54, 4553-4556.	13.8	195
34	Fischer–Tropsch Catalysts for the Production of Hydrocarbon Fuels with High Selectivity. ChemSusChem, 2014, 7, 1251-1264.	6.8	164
35	Ru particle size effect in Ru/CNT-catalyzed Fischer-Tropsch synthesis. Journal of Energy Chemistry, 2013, 22, 321-328.	12.9	39
36	Mesoporous Zeolite‣upported Ruthenium Nanoparticles as Highly Selective Fischer–Tropsch Catalysts for the Production of C ₅ –C ₁₁ Isoparaffins. Angewandte Chemie - International Edition, 2011, 50, 5200-5203.	13.8	243

Jincan Kang

#	Article	IF	CITATIONS
37	Development of Novel Catalysts for Fischer–Tropsch Synthesis: Tuning the Product Selectivity. ChemCatChem, 2010, 2, 1030-1058.	3.7	665
38	Ruthenium Nanoparticles Supported on Carbon Nanotubes as Efficient Catalysts for Selective Conversion of Synthesis Gas to Diesel Fuel. Angewandte Chemie - International Edition, 2009, 48, 2565-2568.	13.8	241
39	Lithium ion-exchanged zeolite faujasite as support of iron catalyst for Fischer-Tropsch synthesis. Catalysis Letters, 2007, 114, 178-184.	2.6	15