
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2437085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 Neutralizing Antibodies for COVID-19 Prevention and Treatment. Annual Review of Medicine, 2022, 73, 1-16.	5.0	91
2	A broadly cross-reactive antibody neutralizes and protects against sarbecovirus challenge in mice. Science Translational Medicine, 2022, 14, eabj7125.	5.8	93
3	Sequence and functional characterization of a public HIV-specific antibody clonotype. IScience, 2022, 25, 103564.	1.9	1
4	Structural diversity of the SARS-CoV-2 Omicron spike. Molecular Cell, 2022, 82, 2050-2068.e6.	4.5	125
5	Cryo-EM structures of SARS-CoV-2 Omicron BA.2 spike. Cell Reports, 2022, 39, 111009.	2.9	74
6	D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host and Microbe, 2021, 29, 23-31.e4.	5.1	308
7	D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Cell Reports, 2021, 34, 108630.	2.9	263
8	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	13.7	199
9	Mapping the SARS-CoV-2 spike glycoprotein-derived peptidome presented by HLA class II on dendritic cells. Cell Reports, 2021, 35, 109179.	2.9	63
10	Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell, 2021, 184, 2955-2972.e25.	13.5	57
11	Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Reports Medicine, 2021, 2, 100313.	3.3	56
12	Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity. Science, 2021, 373, .	6.0	318
13	SnapShot: SARS-CoV-2 antibodies. Cell Host and Microbe, 2021, 29, 1162-1162.e1.	5.1	9
14	InÂvitro and inÂvivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell, 2021, 184, 4203-4219.e32.	13.5	228
15	Cold sensitivity of the SARS-CoV-2 spike ectodomain. Nature Structural and Molecular Biology, 2021, 28, 128-131.	3.6	65
16	Structural basis of glycan276-dependent recognition by HIV-1 broadly neutralizing antibodies. Cell Reports, 2021, 37, 109922.	2.9	5
17	Polyclonal Broadly Neutralizing Antibody Activity Characterized by CD4 Binding Site and V3-Glycan Antibodies in a Subset of HIV-1 Virus Controllers. Frontiers in Immunology, 2021, 12, 670561.	2.2	3
18	How to train your antibody to fight malaria. Immunity, 2021, 54, 2692-2694.	6.6	0

#	Article	IF	CITATIONS
19	Unsupervised Determination of the Number of Conformations in Single-particle Cryo-EM. Microscopy and Microanalysis, 2020, 26, 1818-1818.	0.2	0
20	Controlling the SARS-CoV-2 spike glycoprotein conformation. Nature Structural and Molecular Biology, 2020, 27, 925-933.	3.6	376
21	How Does HIV Env Structure Informs Vaccine Design?. Microscopy and Microanalysis, 2020, 26, 574-575.	0.2	0
22	Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. Cell, 2020, 181, 1458-1463.	13.5	92
23	Disruption of the HIV-1 Envelope allosteric network blocks CD4-induced rearrangements. Nature Communications, 2020, 11, 520.	5.8	42
24	Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell, 2019, 178, 567-584.e19.	13.5	106
25	Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.	2.1	56
26	High-Throughput Mapping of B Cell Receptor Sequences to Antigen Specificity. Cell, 2019, 179, 1636-1646.e15.	13.5	219
27	Targeted selection of HIV-specific antibody mutations by engineering B cell maturation. Science, 2019, 366, .	6.0	118
28	Structural Survey of Broadly Neutralizing Antibodies Targeting the HIV-1 Env Trimer Delineates Epitope Categories and Characteristics of Recognition. Structure, 2019, 27, 196-206.e6.	1.6	69
29	Two-Component Ferritin Nanoparticles for Multimerization of Diverse Trimeric Antigens. ACS Infectious Diseases, 2018, 4, 788-796.	1.8	65
30	Spotiton: New features and applications. Journal of Structural Biology, 2018, 202, 161-169.	1.3	140
31	Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1–4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12265-12270.	3.3	70
32	CryoET of Single Particle CryoEM Grids Reveals Widespread Particle Adsorption to the Air-Water Interface, Which May be Reduced with New Plunging Techniques. Microscopy and Microanalysis, 2018, 24, 872-873.	0.2	0
33	Complete functional mapping of infection- and vaccine-elicited antibodies against the fusion peptide of HIV. PLoS Pathogens, 2018, 14, e1007159.	2.1	46
34	Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1. Nature Medicine, 2018, 24, 857-867.	15.2	256
35	Routine single particle CryoEM sample and grid characterization by tomography. ELife, 2018, 7, .	2.8	216
36	Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer. Nature Structural and Molecular Biology, 2017, 24, 370-378.	3.6	94

#	Article	IF	CITATIONS
37	Structure-Based Design of a Soluble Prefusion-Closed HIV-1 Env Trimer with Reduced CD4 Affinity and Improved Immunogenicity. Journal of Virology, 2017, 91, .	1.5	81
38	Conformational Changes in HIV-1 Env Trimer Induced by a Single CD4 as Revealed by Cryo-EM. Microscopy and Microanalysis, 2017, 23, 1190-1191.	0.2	0
39	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	6.0	310
40	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	13.5	305
41	HIV-1 gp120 as a therapeutic target: navigating a moving labyrinth. Expert Opinion on Therapeutic Targets, 2015, 19, 765-783.	1.5	34
42	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	13.5	305
43	Cocrystal Structures of Antibody N60-i3 and Antibody JR4 in Complex with gp120 Define More Cluster A Epitopes Involved in Effective Antibody-Dependent Effector Function against HIV-1. Journal of Virology, 2015, 89, 8840-8854.	1.5	51
44	Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nature Structural and Molecular Biology, 2015, 22, 522-531.	3.6	333
45	The Expression of Functional Vpx during Pathogenic SIVmac Infections of Rhesus Macaques Suppresses SAMHD1 in CD4+ Memory T Cells. PLoS Pathogens, 2015, 11, e1004928.	2.1	21
46	Neutralization Properties of Simian Immunodeficiency Viruses Infecting Chimpanzees and Gorillas. MBio, 2015, 6, .	1.8	25
47	Structural Definition of an Antibody-Dependent Cellular Cytotoxicity Response Implicated in Reduced Risk for HIV-1 Infection. Journal of Virology, 2014, 88, 12895-12906.	1.5	108
48	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	13.7	702
49	Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies. Immunity, 2013, 39, 245-258.	6.6	332
50	Structural Basis for Highly Effective HIV-1 Neutralization by CD4-Mimetic Miniproteins Revealed by 1.5ÂÃ Cocrystal Structure of gp120 and M48U1. Structure, 2013, 21, 1018-1029.	1.6	29
51	Interfacial Cavity Filling To Optimize CD4–Mimetic Miniprotein Interactions with HIV-1 Surface Glycoprotein. Journal of Medicinal Chemistry, 2013, 56, 5033-5047.	2.9	21
52	Heavy Chain-Only IgG2b Llama Antibody Effects Near-Pan HIV-1 Neutralization by Recognizing a CD4-Induced Epitope That Includes Elements of Coreceptor- and CD4-Binding Sites. Journal of Virology, 2013, 87, 10173-10181.	1.5	22
53	Residue-Level Prediction of HIV-1 Antibody Epitopes Based on Neutralization of Diverse Viral Strains. Journal of Virology, 2013, 87, 10047-10058.	1.5	64
54	Peptides from Second Extracellular Loop of C-C Chemokine Receptor Type 5 (CCR5) Inhibit Diverse Strains of HIV-1. Journal of Biological Chemistry, 2012, 287, 15076-15086.	1.6	24

#	Article	IF	CITATIONS
55	Structure-Based Identification and Neutralization Mechanism of Tyrosine Sulfate Mimetics That Inhibit HIV-1 Entry. ACS Chemical Biology, 2011, 6, 1069-1077.	1.6	31
56	Structural Biology and the Design of Effective Vaccines for HIV-1 and Other Viruses. , 2010, , 387-402.		4
57	Structural basis for the remarkable stability of Bacillus subtilis lipase (Lip A) at low pH. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 302-311.	1.1	26
58	Tyrosine-sulfate isosteres of CCR5 N-terminus as tools for studying HIV-1 entry. Bioorganic and Medicinal Chemistry, 2008, 16, 10113-10120.	1.4	31
59	Structures of the CCR5 N Terminus and of a Tyrosine-Sulfated Antibody with HIV-1 gp120 and CD4. Science, 2007, 317, 1930-1934.	6.0	379
60	The Structure of Formylmethanofuran: Tetrahydromethanopterin Formyltransferase in Complex with its Coenzymes. Journal of Molecular Biology, 2006, 357, 870-879.	2.0	17
61	Multiplex-PCR-Based Recombination as a Novel High-Fidelity Method for Directed Evolution. ChemBioChem, 2005, 6, 1062-1067.	1.3	24
62	How an Enzyme Binds the C1 Carrier Tetrahydromethanopterin. Journal of Biological Chemistry, 2005, 280, 13712-13719.	1.6	18
63	Crystallization and preliminary X-ray crystallographic investigations on several thermostable forms of aBacillus subtilislipase. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 160-162.	2.5	5
64	Structural Basis of Selection and Thermostability of Laboratory Evolved Bacillus subtilis Lipase. Journal of Molecular Biology, 2004, 341, 1271-1281.	2.0	122
65	Stability studies on a lipase from Bacillus subtilis in guanidinium chloride. The Protein Journal, 2003, 22, 51-60.	1.1	33
66	Anomalous Ester Hydrolysis in Mixed Micelles ofp-Nitrophenyloleateâ^'Triton X-100 in the Presence of Guanidinium Chloride: Implications in Lipase Assays. Langmuir, 2002, 18, 3018-3026.	1.6	16