
Thomas Parkinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2436893/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2018, 142, 502-512.	3.0	279
2	Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2019, 153, 205-217.	3.0	277
3	Thermal pleasure in built environments: physiology of alliesthesia. Building Research and Information, 2015, 43, 288-301.	2.0	159
4	Nudging the adaptive thermal comfort model. Energy and Buildings, 2020, 206, 109559.	3.1	124
5	Continuous IEQ monitoring system: Context and development. Building and Environment, 2019, 149, 15-25.	3.0	91
6	Understanding patterns of adaptive comfort behaviour in the Sydney mixed-mode residential context. Energy and Buildings, 2017, 141, 274-283.	3.1	86
7	Residential adaptive comfort in a humid subtropical climate—Sydney Australia. Energy and Buildings, 2018, 158, 1296-1305.	3.1	85
8	Thermal pleasure in built environments: alliesthesia in different thermoregulatory zones. Building Research and Information, 2016, 44, 20-33.	2.0	74
9	Lessons learned from 20 years of CBE's occupant surveys. Buildings and Cities, 2021, 2, 166-184.	1.1	60
10	Thermal comfort in a mixed-mode building: Are occupants more adaptive?. Energy and Buildings, 2019, 203, 109436.	3.1	50
11	Thermal pleasure in built environments: spatial alliesthesia from air movement. Building Research and Information, 2017, 45, 320-335.	2.0	47
12	Residential adaptive comfort in a humid continental climate – Tianjin China. Energy and Buildings, 2018, 170, 115-121.	3.1	47
13	Continuous IEQ monitoring system: Performance specifications and thermal comfort classification. Building and Environment, 2019, 149, 241-252.	3.0	47
14	Thermal pleasure in built environments: spatial alliesthesia from contact heating. Building Research and Information, 2016, 44, 248-262.	2.0	38
15	The Squeaky wheel: Machine learning for anomaly detection in subjective thermal comfort votes. Building and Environment, 2019, 151, 219-227.	3.0	29
16	A data-driven approach to defining acceptable temperature ranges in buildings. Building and Environment, 2019, 153, 302-312.	3.0	29
17	Improved long-term thermal comfort indices for continuous monitoring. Energy and Buildings, 2020, 224, 110270.	3.1	27
18	A data-driven analysis of occupant workspace dissatisfaction. Building and Environment, 2021, 205, 108270.	3.0	21

THOMAS PARKINSON

#	Article	IF	CITATIONS
19	Creating alliesthesia in cool environments using personal comfort systems. Building and Environment, 2022, 209, 108642.	3.0	21
20	Overcooling of offices reveals gender inequity in thermal comfort. Scientific Reports, 2021, 11, 23684.	1.6	21
21	The impact of occupant's thermal sensitivity on adaptive thermal comfort model. Building and Environment, 2022, 207, 108517.	3.0	19
22	Targeted occupant surveys: A novel method to effectively relate occupant feedback with environmental conditions. Building and Environment, 2020, 184, 107129.	3.0	14
23	Indoor environment and adaptive thermal comfort models in residential buildings in Tianjin, China. Procedia Engineering, 2017, 205, 1627-1634.	1.2	13
24	Predicting thermal pleasure experienced in dynamic environments from simulated cutaneous thermoreceptor activity. Indoor Air, 2021, 31, 2266-2280.	2.0	11
25	Quantifying useful thermal mass: how much thermal mass do you need?. Architectural Science Review, 2014, 57, 271-285.	1.1	10
26	Detailed measured air speed distribution in four commercial buildings with ceiling fans. Building and Environment, 2021, 200, 107979.	3.0	9
27	Study on adaptive comfort behaviours in mixed-mode residential buildings in Tianjin, China. Indoor and Built Environment, 2022, 31, 777-787.	1.5	5
28	Ventilation mode effect on thermal comfort in a mixed mode building. IOP Conference Series: Materials Science and Engineering, 2019, 609, 042029.	0.3	2
29	New Approaches to Modelling Occupant Comfort. Buildings, 2022, 12, 985.	1.4	0