Ole J Nielsen

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2436669/ole-j-nielsen-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

214 5,859 42 62 g-index

226 6,242 3.8 5.14 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
214	Atmospheric chemistry of CFCN: kinetics and products of reaction with OH radicals, Cl atoms and O <i>Physical Chemistry Chemical Physics</i> , 2022 , 24, 2638-2645	3.6	
213	Tropospheric photolysis of CF3CHO. Atmospheric Environment, 2022, 272, 118935	5.3	0
212	The case for a more precise definition of regulated PFAS. <i>Environmental Sciences: Processes and Impacts</i> , 2021 ,	4.3	2
211	The Global Warming Potentials for Anesthetic Gas Sevoflurane Need Significant Corrections. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	2
210	Reflection on two Ambio papers by P. J. Crutzen on ozone in the upper atmosphere: This article belongs to Ambio's 50th Anniversary Collection. Theme: Ozone Layer. <i>Ambio</i> , 2021 , 50, 40-43	6.5	O
209	Atmospheric Chemistry of CHOCFCHF Journal of Physical Chemistry A, 2021, 125, 10640-10648	2.8	0
208	Chemical analysis and origin of the smell of line-dried laundry. <i>Environmental Chemistry</i> , 2020 , 17, 355	3.2	4
207	Theoretical study of hydroxyl radical (OHDinduced decomposition of tert-butyl methyl ether (MTBE). <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 1037-1044	4.3	1
206	Photochemistry of 2,2-dichloroethanol: kinetics and mechanism of the reaction with Cl atoms and OH radicals. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 719-727	4.3	
205	Trichloroacetyl chloride, CClCOCl, as an alternative Cl atom precursor for laboratory use and determination of Cl atom rate coefficients for n-CH[double bond, length as m-dash]CH(CH)CN (x = 3-4). Environmental Sciences: Processes and Impacts, 2020 , 22, 1347-1354	4.3	
204	Quantum Yields and NO Formation from Photolysis of Solid Films of Neonicotinoids. <i>Journal of Agricultural and Food Chemistry</i> , 2019 , 67, 1638-1646	5.7	7
203	Atmospheric chemistry of CH3C(O)CN: Kinetics and reaction mechanisms with Cl atoms and OH radicals. <i>Chemical Physics Letters</i> , 2019 , 720, 128-133	2.5	
202	Atmospheric chemistry of a cyclic hydro-fluoro-carbon: kinetics and mechanisms of gas-phase reactions of 1-trifluoromethyl-1,2,2-trifluorocyclobutane with Cl atoms, OH radicals, and O. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 1497-1505	3.6	1
201	Atmospheric Chemistry of Methoxyflurane (CH3OCF2CHCl2): Kinetics of the gas-phase reactions with OH radicals, Cl atoms and O3. <i>Chemical Physics Letters</i> , 2019 , 722, 119-123	2.5	5
200	Rate coefficients for reactions of OH radicals with CH3D, CH2D2, CHD3, and CD4. <i>International Journal of Chemical Kinetics</i> , 2019 , 51, 390-394	1.4	
199	Atmospheric Chemistry of Pentafluorophenol: Kinetics and Mechanism of the Reactions of Cl Atoms and OH Radicals. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 10315-10322	2.8	1
198	Atmospheric Chemistry of n-CH?CH(CH) CN ($x = 0-4$): Kinetics and Mechanisms. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 5983-5992	2.8	5

(2014-2018)

197	Atmospheric chemistry of (Z)-CFCH[double bond, length as m-dash]CHCl: products and mechanisms of the Cl atom, OH radical and O reactions, and role of (E)-(Z) isomerization. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 27949-27958	3.6	О
196	Atmospheric chemistry of hexa- and penta-fluorobenzene: UV photolysis and kinetics and mechanisms of the reactions of Cl atoms and OH radicals. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 28796-28809	3.6	4
195	Atmospheric chemistry of n-CH3(CH2)xCN (xଢDB): Kinetics and mechanisms. <i>International Journal of Chemical Kinetics</i> , 2018 , 50, 813-826	1.4	1
194	Reactions of Three Lactones with Cl, OD, and O: Atmospheric Impact and Trends in Furan Reactivity. <i>Journal of Physical Chemistry A</i> , 2017 , 121, 4123-4131	2.8	5
193	Atmospheric Chemistry of Halogenated Organic Compounds 2017 , 305-402		2
192	Atmospheric Chemistry of (CF)CF-C?N: A Replacement Compound for the Most Potent Industrial Greenhouse Gas, SF. <i>Environmental Science & Environmental </i>	10.3	65
191	Atmospheric chemistry of hexanenitrile: Kinetics and products of the gas-phase reactions of CH3(CH2)4CN with Cl atoms and OH radicals. <i>Chemical Physics Letters</i> , 2017 , 688, 7-10	2.5	2
190	Reaction kinetics of (CF3)2CFCN with OH radicals as a function of temperature (278B58 K): A good replacement for greenhouse SF6?. <i>Chemical Physics Letters</i> , 2017 , 687, 297-302	2.5	17
189	Atmospheric Chemistry of CH3CH2OCH3: Kinetics and Mechanism of Reactions with Cl Atoms and OH Radicals. <i>International Journal of Chemical Kinetics</i> , 2017 , 49, 10-20	1.4	7
188	Atmospheric chemistry of Z- and E-CFCH[double bond, length as m-dash]CHCF. <i>Physical Chemistry Chemical Physics</i> , 2016 , 19, 735-750	3.6	15
187	Atmospheric Chemistry of Tetrahydrofuran, 2-Methyltetrahydrofuran, and 2,5-Dimethyltetrahydrofuran: Kinetics of Reactions with Chlorine Atoms, OD Radicals, and Ozone. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 7320-6	2.8	6
186	Atmospheric chemistry of E- and Z-CF3CHI=ICHCF3. <i>Qscience Proceedings</i> , 2016 , 2016, 49		
185	Atmospheric chemistry of CF3CF2OCH3. Chemical Physics Letters, 2016, 653, 149-154	2.5	3
184	Atmospheric Chemistry of (CF3)2CHOCH3, (CF3)2CHOCHO, and CF3C(O)OCH3. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 10540-52	2.8	12
183	Atmospheric chemistry of cis-CF3CH CHCl (HCFO-1233zd(Z)): Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3. <i>Chemical Physics Letters</i> , 2015 , 639, 289-293	2.5	13
182	Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs). <i>Chemosphere</i> , 2015 , 129, 135-41	8.4	54
181	Emissions characterization from EURO 5 diesel/biodiesel passenger car operating under the new European driving cycle. <i>Atmospheric Environment</i> , 2014 , 84, 339-348	5.3	44
180	Comment on "Airborne trifluoroacetic acid and its fraction from the degradation of HFC-134a in Beijing, China". <i>Environmental Science & Enp.; Technology</i> , 2014 , 48, 9948	10.3	1

179	Atmospheric chemistry of (CF3)2CFOCH3. Chemical Physics Letters, 2014, 607, 5-9	2.5	8
178	Re-evaluation of the reaction rate coefficient of CH3BrDH with Implications for the atmospheric budget of methyl bromide. <i>Atmospheric Environment</i> , 2013 , 80, 70-74	5.3	4
177	Sustainable Mobility, Future Fuels, and the Periodic Table. <i>Journal of Chemical Education</i> , 2013 , 90, 440-	-424.5	16
176	Atmospheric chemistry of CF3CH2OCH3: Reaction with chlorine atoms and OH radicals, kinetics, degradation mechanism and global warming potential. <i>Chemical Physics Letters</i> , 2012 , 524, 32-37	2.5	17
175	Atmospheric chemistry of CxF2x+1CHCH2 (x=1, 2, 4, 6 and 8): Radiative efficiencies and global warming potentials. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2012 , 233, 50-52	4.7	14
174	Atmospheric chemistry of ethyl propionate. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 5164-79	2.8	22
173	Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 5806-20	2.8	55
172	Corn ethanol production, food exports, and indirect land use change. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 6379-84	10.3	36
171	Rate coefficients for the chemical reactions of CH2F2, CHClF2, CH2FCF3 and CH3CCl3 with O(1D) at 298 K. <i>Chemical Physics Letters</i> , 2012 , 554, 27-32	2.5	5
170	Atmospheric chemistry of t-CF3CH=CHCl: products and mechanisms of the gas-phase reactions with chlorine atoms and hydroxyl radicals. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 1735-48	3.6	15
169	Medical intelligence article: assessing the impact on global climate from general anesthetic gases. <i>Anesthesia and Analgesia</i> , 2012 , 114, 1081-5	3.9	85
168	Atmospheric chemistry of two biodiesel model compounds: methyl propionate and ethyl acetate. Journal of Physical Chemistry A, 2011 , 115, 8906-19	2.8	29
167	Atmospheric chemistry of C2F5CH2OCH3 (HFE-365mcf). <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 2758-64	3.6	7
166	Solubility of acetic acid and trifluoroacetic acid in low-temperature (207-245 k) sulfuric acid solutions: implications for the upper troposphere and lower stratosphere. <i>Journal of Physical Chemistry A</i> , 2011 , 115, 4388-96	2.8	
165	Time horizons for transport climate impact assessments. <i>Environmental Science & Environmental Science</i>	10.3	3
164	Relative integrated IR absorption in the atmospheric window is not the same as relative radiative efficiency. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, E178-9; author reply E180	11.5	4
163	Inhalation anaesthetics and climate change. British Journal of Anaesthesia, 2010, 105, 760-6	5.4	99
162	Distillation Curves for Alcoholtasoline Blends. <i>Energy & Energy & Energy & 2010</i> , 24, 2683-2691	4.1	89

161	Atmospheric chemistry of i-butanol. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 12462-9	2.8	17
160	Vapor Pressures of Alcohol © asoline Blends. <i>Energy & Fuels</i> , 2010 , 24, 3647-3654	4.1	123
159	CHF2OCHF2 (HFE-134): IR spectrum and kinetics and products of the chlorine-atom-initiated oxidation. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 4963-7	2.8	8
158	Atmospheric chemistry of HCF2O(CF2CF2O)xCF2H (x=2-4): kinetics and mechanisms of the chlorine-atom-initiated oxidation. <i>ChemPhysChem</i> , 2010 , 11, 4035-41	3.2	9
157	Theoretical study of the gas phase reaction of methyl acetate with the hydroxyl radical: Structures, mechanisms, rates and temperature dependencies. <i>Chemical Physics Letters</i> , 2010 , 490, 116-122	2.5	23
156	Kinetics of the reaction of Cl atoms with CHCl3 over the temperature range 253B13 K. <i>Chemical Physics Letters</i> , 2010 , 494, 160-162	2.5	
155	Kinetics of the gas-phase reactions of chlorine atoms with CH2F2, CH3CCl3, and CF3CFH2 over the temperature range 253B53 K. <i>International Journal of Chemical Kinetics</i> , 2009 , 41, 401-406	1.4	5
154	Methyl acetate reaction with OH and Cl: Reaction rates and products for a biodiesel analogue. <i>Chemical Physics Letters</i> , 2009 , 472, 23-29	2.5	9
153	Atmospheric chemistry of cis-CF3CHCHF: Kinetics of reactions with OH radicals and O3 and products of OH radical initiated oxidation. <i>Chemical Physics Letters</i> , 2009 , 473, 233-237	2.5	31
152	Atmospheric chemistry of n-butanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NO(x). <i>Journal of Physical Chemistry A</i> , 2009 , 113, 701	1 1 -20	28
151	Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of Epinene. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 3583-3599	6.8	44
150	From Molecules to Droplets. Advances in Quantum Chemistry, 2008, 55, 355-385	1.4	4
149	Atmospheric chemistry of 3-pentanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOX. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 8053-60	2.8	16
148	Comment on "Atmospheric chemistry of linear perfluorinated aldehydes: dissociation kinetics of CnF2n+1CO radicals". <i>Journal of Physical Chemistry A</i> , 2008 , 112, 576-7; discussion 577-8	2.8	2
147	Atmospheric chemistry of trans-CF₃CH=CHF: products and mechanisms of hydroxyl radical and chlorine atom initiated oxidation. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 3141	-3147	24
146	Kinetics and products of chlorine atom initiated oxidation of HCF2OCF2OCF2CF2OCF2H and HCF2O(CF2O)n-(CF2CF2O)mCF2H. <i>International Journal of Chemical Kinetics</i> , 2008 , 40, 819-825	1.4	11
145	Atmospheric chemistry of trans-CF3CHCHCl: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2008 , 199, 92-97	4.7	38
144	Atmospheric chemistry of CF3CFCH2: Products and mechanisms of Cl atom and OH radical initiated oxidation. <i>Chemical Physics Letters</i> , 2008 , 450, 263-267	2.5	43

143	Atmospheric chemistry of CF3CH=CH2 and C4F9CH=CH2: products of the gas-phase reactions with Cl atoms and OH radicals. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 909-15	2.8	32
142	Atmospheric chemistry of a model biodiesel fuel, CH3C(O)O(CH2)2OC(O)CH3: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOx. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 2547-54	2.8	8
141	Atmospheric chemistry of 2-ethoxy-3,3,4,4,5-pentafluorotetrahydro-2,5-bis[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-furan: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation. <i>Environmental</i>	10.3	5
140	Science & Scienc	2.5	196
139	Atmospheric chemistry of trans-CF3CHCHF: Kinetics of the gas-phase reactions with Cl atoms, OH radicals, and O3. <i>Chemical Physics Letters</i> , 2007 , 443, 199-204	2.5	78
138	The effect of nitrogen dioxide on particle formation during ozonolysis of two abundant monoterpenes indoors. <i>Atmospheric Environment</i> , 2006 , 40, 1030-1042	5.3	37
137	Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol. <i>Environmental Science & Environmental Scienc</i>	10.3	224
136	Atmospheric chemistry of perfluorinated aldehyde hydrates (n-C(x)F(2x+1)CH(OH)2, $x = 1, 3, 4$): hydration, dehydration, and kinetics and mechanism of Cl atom and OH radical initiated oxidation. Journal of Physical Chemistry A, 2006 , 110, 9854-60	2.8	26
135	Atmospheric chemistry of n-C(x)F(2)(x)(+1)CHO (x = 1, 2, 3, 4): fate of n-C(x)F(2)(x)(+1)C(O) radicals. Journal of Physical Chemistry A, 2006 , 110, 12443-7	2.8	34
134	Atmospheric chemistry of C4F9O(CH2)3OC4F9 and CF3CFHCF2O(CH2)3OCF3CFHCF2: Lifetimes, degradation products, and environmental impact. <i>Chemical Physics Letters</i> , 2006 , 427, 41-46	2.5	5
133	Atmospheric chemistry of 4:2 fluorotelomer alcohol (n-C4F9CH2CH2OH): products and mechanism of Cl atom initiated oxidation in the presence of NOx. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 1849-5	6 ^{2.8}	30
132	Atmospheric chemistry of CF3OCF2CF2H and CF3OC(CF3)2H: reaction with Cl atoms and OH radicals, degradation mechanism, global warming potentials, and empirical relationship between k(OH) and k(Cl) for organic compounds. <i>Journal of Physical Chemistry A</i> , 2005 , 109, 3926-34	2.8	56
131	Atmospheric Photooxidation of Gas Phase Air Pollutants 2005 , 119-160		1
130	Prediction of indoor concentration of 0.54th particles of outdoor origin in an uninhabited apartment. <i>Atmospheric Environment</i> , 2004 , 38, 6349-6359	5.3	34
129	Atmospheric Chemistry of n-CxF2x+1CHO (x = 1, 3, 4): Mechanism of the CxF2x+1C(O)O2 + HO2 Reaction. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 6325-6330	2.8	27
128	Atmospheric Chemistry of CF3CFHCF2OCF3 and CF3CFHCF2OCF2H: Reaction with Cl Atoms and OH Radicals, Degradation Mechanism, and Global Warming Potentials. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 11333-11338	2.8	27
127	Atmospheric Chemistry of n-CxF2x+1CHO (x = 1, 3, 4): Reaction with Cl Atoms, OH Radicals and IR Spectra of CxF2x+1C(O)O2NO2. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 5189-5196	2.8	41
126	Atmospheric Chemistry of CH3O(CF2CF2O)nCH3 (n = 1B): Kinetics and Mechanism of Oxidation Initiated by Cl Atoms and OH Radicals, IR Spectra, and Global Warming Potentials. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 1964-1972	2.8	35

125	Ranking of chemical substances based on the Japanese Pollutant Release and Transfer Register using partial order theory and random linear extensions. <i>Chemosphere</i> , 2004 , 55, 1005-25	8.4	22
124	Particle size distribution and particle mass measurements at urban, near-city and rural level in the Copenhagen area and Southern Sweden. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 281-292	6.8	93
123	CF3CH(ONO)CF3: Synthesis, IR spectrum, and use as OH radical source for kinetic and mechanistic studies. <i>International Journal of Chemical Kinetics</i> , 2003 , 35, 159-165	1.4	6
122	Kinetics of the reaction of OH radicals with acetylene in 25 B 000 torr of air at 296 K. <i>International Journal of Chemical Kinetics</i> , 2003 , 35, 191-197	1.4	50
121	Panspermiatrue or false?. Lancet, The, 2003, 362, 406; author reply 407-8	40	3
120	Infrared spectrum and global warming potential of SF5CF3. <i>Atmospheric Environment</i> , 2002 , 36, 1237-1	2 4 03	32
119	UV absorption spectra of HO2, CH3O2, C2H5O2, and CH3C(O)CH2O2 radicals and mechanism of the reactions of F and Cl atoms with CH3C(O)CH3. <i>International Journal of Chemical Kinetics</i> , 2002 , 34, 283-291	1.4	28
118	A comparison of partial order technique with three methods of multi-criteria analysis for ranking of chemical substances. <i>Journal of Chemical Information and Computer Sciences</i> , 2002 , 42, 1086-98		62
117	Isotopic processes in atmospheric chemistry. Chemical Society Reviews, 2002, 31, 313-23	58.5	61
116	Kinetics and Mechanism of the Gas-Phase Reaction of Cl Atoms and OH Radicals with Fluorobenzene at 296 K. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 7779-7787	2.8	13
115	OH-initiated oxidation of benzene. Physical Chemistry Chemical Physics, 2002, 4, 4399-4411	3.6	63
114	Comparison of the combined monitoring-based and modelling-based priority setting scheme with partial order theory and random linear extensions for ranking of chemical substances. <i>Chemosphere</i> , 2002 , 49, 637-49	8.4	23
113	Trifluoroacetic acid in ancient freshwater. Atmospheric Environment, 2001, 35, 2799-2801	5.3	22
112	Comment on Nighttime Tropospheric Chemistry: Kinetics and Product Studies in the Reaction of 4-Alkyl- and 4-Alkoxytoluenes with NO3 in Gas Phasell Environmental Science & amp; Technology, 2000, 34, 2875-2875	10.3	1
111	Kinetics and Mechanism of the Reaction of Cl Atoms with Nitrobenzene. <i>Journal of Physical Chemistry A</i> , 2000 , 104, 11328-11331	2.8	12
110	Atmospheric Chemistry of Trimethoxymethane, (CH3O)3CH; Laboratory Studies. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 2632-2640	2.8	9
109	Atmospheric Chemistry of Cyclohexane: UV Spectra of c-C6H11land (c-C6H11)O2lRadicals, Kinetics of the Reactions of (c-C6H11)O2lRadicals with NO and NO2, and the Fate of the Alkoxy Radical (c-C6H11)O[] Journal of Physical Chemistry A, 1999, 103, 2688-2695	2.8	52
108	Atmospheric Chemistry of 1,3-Dioxolane: Kinetic, Mechanistic, and Modeling Study of OH Radical Initiated Oxidation. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 5959-5966	2.8	20

107	Atmospheric Chemistry of CF3C(O)OCH2CF3: UV Spectra and Kinetic Data for CF3C(O)OCH(I)CF3and CF3C(O)OCH(OOI)CF3Radicals, and Atmospheric Fate of CF3C(O)OCH(OI)CF3Radicals. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 5705-5713	2.8	10
106	Atmospheric Degradation of Anthropogenic Molecules. <i>Handbook of Environmental Chemistry</i> , 1999 , 63-99	0.8	2
105	Absolute rate constants for F + CH3CHO and CH3CO + O2, relative rate study of CH3CO + NO, and the product distribution of the F + CH3CHO reaction. <i>International Journal of Chemical Kinetics</i> , 1998 , 30, 913-921	1.4	24
104	Atmospheric chemistry of acetone: Kinetic study of the CH3C(O)CH2O2+NO/NO2 reactions and decomposition of CH3C(O)CH2O2NO2. <i>International Journal of Chemical Kinetics</i> , 1998 , 30, 475-489	1.4	26
103	Atmospheric Chemistry of 1,3,5-Trioxane: UV Spectra of c-C3H5O3 (Dand (c-C3H5O3)O2 (Dand (c-C3H5O3)O2 (Dand (c-C3H5O3)O2 (Dand NO2), and Atmospheric Fate of the Alkoxy Radical (c-C3H5O3)O (Dand No2) Journal of Physical Chemistry A, 1998, 102, 4829-4838	2.8	22
102	Absolute and Relative Rate Constants for the Reactions CH3C(O)O2 + NO and CH3C(O)O2 + NO2 and Thermal Stability of CH3C(O)O2NO2. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 1779-1789	2.8	28
101	Atmospheric Chemistry of the Phenoxy Radical, C6H5O() UV Spectrum and Kinetics of Its Reaction with NO, NO2, and O2. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 7964-7974	2.8	91
100	Kinetics and Mechanism of the Reactions of 2,3-Butadione with F and Cl Atoms, UV Absorption Spectra of CH3C(O)C(O)CH2Eand CH3C(O)C(O)CH2O2ERadicals, and Atmospheric Fate of CH3C(O)C(O)CH2OERadicals. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 8913-8923	2.8	7
99	Atmospheric Chemistry of HFE-7200 (C4F9OC2H5): Reaction with OH Radicals and Fate of C4F9OCH2CH2O (Dand C4F9OCHO (DCH3Radicals. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 4839-4845	2.8	47
98	Kinetics and Mechanism of the Gas-Phase Reaction of Cl Atoms with Benzene. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 10671-10681	2.8	53
97	Atmospheric Chemistry of CF3CH2OCH2CF3: UV Spectra and Kinetic Data for CF3CH(IDCH2CF3 and CF3CH(OOIDCH2CF3 Radicals and Atmospheric Fate of CF3CH(OIDCH2CF3 Radicals. <i>Journal of Physical Chemistry A</i> , 1998 , 102, 1152-1161	2.8	37
96	Atmospheric chemistry of 1,4-dioxane. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1997 , 93, 2855-2863		18
95	Atmospheric Chemistry of CH2BrCl: Kinetics and Mechanism of the Reaction of F Atoms with CH2BrCl and Fate of the CHBrClOlRadical. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 5477-5488	2.8	16
94	Atmospheric Chemistry of Dimethyl Carbonate: Reaction with OH Radicals, UV Spectra of CH3OC(O)OCH2 and CH3OC(O)OCH2O2 Radicals, Reactions of CH3OC(O)OCH2O2 with NO and NO2, and Fate of CH3OC(O)OCH2O Radicals. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 3514-3525	2.8	51
93	Atmospheric Chemistry of HFE-7100 (C4F9OCH3): Reaction with OH Radicals, UV Spectra and Kinetic Data for C4F9OCH2©and C4F9OCH2O©ERadicals, and the Atmospheric Fate of C4F9OCH2O©ERadicals. <i>Journal of Physical Chemistry A</i> , 1997 , 101, 8264-8274	2.8	110
92	Atmospheric Chemistry of Dimethoxymethane (CH3OCH2OCH3): Kinetics and Mechanism of Its Reaction with OH Radicals and Fate of the Alkoxy Radicals CH3OCHO(IDCH3 and CH3OCH2OCH2O(I] <i>Journal of Physical Chemistry A</i> , 1997 , 101, 5302-5308	2.8	39
91	Kinetics and Mechanism of the Gas Phase Reaction of Atomic Chlorine with CH2ICl at 206432 K. Journal of Physical Chemistry A, 1997, 101, 8035-8041	2.8	26
90	Atmospheric Chemistry and Environmental Impact of Hydrofluorocarbons and Hydrochlorofluorocarbons. <i>ACS Symposium Series</i> , 1997 , 16-30	0.4	

89	Atmospheric chemistry of HFC-134a: Kinetics of the decomposition of the alkoxy radical CF3CFHO. <i>International Journal of Chemical Kinetics</i> , 1997 , 29, 209-217	15
88	Oxidation of dimethyl ether: Absolute rate constants for the self reaction of CH3OCH2 radicals, the reaction of CH3OCH2 radicals with O2, and the thermal decomposition of CH3OCH2 radicals. 1.4 International Journal of Chemical Kinetics, 1997, 29, 627-636	51
87	Atmospheric Chemistry of Nitrogen-Containing Species 1997 , 170-178	O
86	Atmospheric Chemistry of 1,2-Dichloroethane: UV Spectra of CH2ClCHCl and CH2ClCHClO2 Radicals, Kinetics of the Reactions of CH2ClCHCl Radicals with O2 and CH2ClCHClO2 Radicals with NO and NO2, and Fate of the Alkoxy Radical CH2ClCHClO. <i>The Journal of Physical Chemistry</i> , 1996 ,	23
85	Kinetics and Mechanism of the Reaction of F Atoms with CH3Br. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 10989-10998	18
84	Atmospheric Chemistry of CF3CFHCF3 (HFC-227ea): Spectrokinetic Investigation of the CF3CFO2IF3 Radical, Its Reactions with NO and NO2, and Fate of the CF3CFOIF3 Radical. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 8882-8889	32
83	Atmospheric Chemistry of 1,1,1,2-Tetrachloroethane (CCl3CH2Cl): Spectrokinetic Investigation of the CCl3CClHO2 Radical, Its Reactions with NO and NO2, and Atmospheric Fate of the CCl3CClHO Radical. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 18399-18407	7
82	Dimethyl Ether Oxidation: Kinetics and Mechanism of the CH3OCH2 + O2 Reaction at 296 K and 0.38¶40 Torr Total Pressure. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 17218-17225	69
81	Role of Excited CF3CFHO Radicals in the Atmospheric Chemistry of HFC-134a. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 18116-18122	122
8o	Atmospheric Chemistry of CF2BrH: Kinetics and Mechanism of Reaction with F and Cl Atoms and Fate of CF2BrO Radicals. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 7050-7059	20
79	Atmospheric Chemistry of HFC-227ca: Spectrokinetic Investigation of the CF3CF2CF2O2 Radical, Its Reactions with NO and NO2, and the Atmospheric Fate of the CF3CF2CF2O Radical. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 6572-6579	23
78	Atmospheric chemistry of di-tert-butyl ether: Rates and products of the reactions with chlorine atoms, hydroxyl radicals, and nitrate radicals. <i>International Journal of Chemical Kinetics</i> , 1996 , 28, 299-30 $^{1.4}$	20
77	Kinetics and mechanism of the reaction of CF3 radicals with NO2. <i>International Journal of Chemical Kinetics</i> , 1996 , 28, 579-588	8
76	Kinetics of the Reactions of Acetonitrile with Chlorine and Fluorine Atoms. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 660-668	24
75	Atmospheric Chemistry of FNO and FNO2: Reactions of FNO with O3, O(3P), HO2, and HCl and the Reaction of FNO2 with O3. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 984-989	20
74	Atmospheric Chemistry of HFC-272ca: Spectrokinetic Investigation of the CH3CF2CH2O2 Radical, Its Reactions with NO and NO2, and the Fate of the CH3CF2CH2O Radical. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 1995-2001	11
73	Atmospheric Chemistry of HFC-236fa: Spectrokinetic Investigation of the CF3CHO2.bul.CF3 Radical, Its Reaction with NO, and the Fate of the CF3CHO.bul.CF3 Radical. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 5373-5378	18
7 ²	Atmospheric Chemistry of 1,1,1-Trichloroethane: UV Spectra and Self-Reaction Kinetics of CCl3CH2 and CCl3CH2O2 Radicals, Kinetics of the Reactions of the CCl3CH2O2 Radical with NO and NO2, and the Fate of the Alkoxy Radical CCl3CH2O. The Journal of Physical Chemistry, 1995 , 99, 6570-6579	30

71	Atmospheric Chemistry of Pentachloroethane (CCl3CCl2H): Absorption Spectra of CCl3CCl2 and CCl3CCl2O2 Radicals, Kinetics of the CCl3CCl2O2 + NO Reaction, and Fate of the CCl3CCl2O Radical. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 16932-16938		11
70	Atmospheric Chemistry of HFC-236cb: Spectrokinetic Investigation of the CF3CF2CFHO2 Radical, Its Reaction with NO and NO2, and the Fate of the CF3CF2CFHO Radical. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 17386-17393		8
69	Atmospheric chemistry of HCFC-133a: the UV absorption spectra of CF3CClH and CF3CClHO2 radicals, reactions of CF3CClHO2 with NO and NO2, and fate of CF3CClHO radicals. <i>The Journal of Physical Chemistry</i> , 1995 , 99, 13437-13444		23
68	Hydrofluorocarbons and stratospheric ozone. <i>Faraday Discussions</i> , 1995 , 100, 55	3.6	54
67	First direct kinetic study of isotopic enrichment of ozone. <i>Journal of Geophysical Research</i> , 1995 , 100, 20979		28
66	Atmospheric chemistry of FCOx radicals: Kinetic and mechanistic study of the FC(O)O2 + NO2 reaction. <i>International Journal of Chemical Kinetics</i> , 1995 , 27, 391-402	1.4	17
65	Atmospheric chemistry of dimethyl sulfide. Kinetics of the CH3SCH2O2 + NO2 reaction in the gas phase at 296 K. <i>Chemical Physics Letters</i> , 1995 , 236, 385-388	2.5	7
64	UV absorption spectrum of CH3OCH2 radicals and kinetics of the reaction of CH3OCH2O2 radicals with NO and NO2 in the gas phase. <i>Chemical Physics Letters</i> , 1995 , 240, 53-56	2.5	42
63	ATMOSPHERIC CHEMISTRY OF HYDROFLUOROCARBONS. <i>Advanced Series in Physical Chemistry</i> , 1995 , 616-685		3
62	Atmospheric Chemistry of HFC-152: UV Absorption Spectrum of CH2FCFHO2 Radicals, Kinetics of the Reaction CH2FCFHO2 + NO .fwdarw. CH2FCHFO + NO2, and Fate of the Alkoxy Radical CH2FCFHO. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 5435-5440		14
61	Atmospheric Chemistry of CF3COx Radicals: Fate of CF3CO Radicals, the UV Absorption Spectrum of CF3C(O)O2 Radicals, and Kinetics of the Reaction CF3C(O)O2 + NO .fwdarw. CF3C(O)O + NO2. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 5686-5694		26
60	Atmospheric Chemistry of HFC-143a: Spectrokinetic Investigation of the CF3CH2O2.bul. Radical, Its Reactions with NO and NO2, and the Fate of CF3CH2O. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 95	18-952!	5 ²²
59	A spectrokinetic study of CH2I and CH2IO2 radicals. <i>International Journal of Chemical Kinetics</i> , 1994 , 26, 259-272	1.4	50
58	Spectrokinetic study of SF5 and SF5O2 radicals and the reaction of SF5O2 with NO. <i>International Journal of Chemical Kinetics</i> , 1994 , 26, 615-629	1.4	9
57	Reactions of CF3O radicals with selected alkenes and aromatics under atmospheric conditions. <i>Chemical Physics Letters</i> , 1994 , 218, 29-33	2.5	12
56	Mechanistic study of the gas-phase reaction of CH2FO2 radicals with HO2. <i>Chemical Physics Letters</i> , 1994 , 218, 34-42	2.5	42
55	Kinetics of the reaction of F atoms with O2 and UV spectrum of FO2 radicals in the gas phase at 295 K. <i>Chemical Physics Letters</i> , 1994 , 218, 287-294	2.5	32
54	Atmospheric chemistry of CF3COOH. Kinetics of the reaction with OH radicals. <i>Chemical Physics Letters</i> , 1994 , 226, 171-177	2.5	19

53	Atmospheric chemistry of CF3C(O)O2 radicals. Kinetics of their reaction with NO2 and kinetics of the thermal decomposition of the product CF3C(O)O2NO2. <i>Chemical Physics Letters</i> , 1994 , 226, 563-569.	9 ^{2.5}	34	
52	Atmospheric chemistry of HFC-134a. Kinetic and mechanistic study of the CF3CFHO2+NO2 reaction. <i>Chemical Physics Letters</i> , 1994 , 225, 375-380	2.5	11	
51	Pulse radiolysis study of CF3CCI2 and CF3CCI2O2 radicals in the gas phase at 295K. <i>Research on Chemical Intermediates</i> , 1994 , 20, 265-276	2.8	7	
50	Atmospheric Chemistry of FO2 Radicals: Reaction with CH4, O3, NO, NO2, and CO at 295 K. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 6731-6739		22	
49	The Environmental Impact of CFC Replacements HFCs and HCFCs. <i>Environmental Science & Environmental Sc</i>	10.3	28	
48	Atmospheric Chemistry of FCOx Radicals: UV Spectra and Self-Reaction Kinetics of FCO and FC(O)O2 and Kinetics of Some Reactions of FCOx with O2, O3, and NO at 296 K. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 2346-2356		71	
47	The environmental impact of CFC replacements - HFCs and HCFCs. <i>Environmental Science & Environmental Science & Technology</i> , 1994 , 28, 320A-326A	10.3	82	
46	Comment on the Atmospheric Chemistry of FNO. <i>The Journal of Physical Chemistry</i> , 1994 , 98, 10373-103	373	7	
45	Atmospheric chemistry of dimethyl sulfide: UV spectra and self-reaction kinetics of CH3SCH2 and CH3SCH2O2 radicals and kinetics of the reactions CH3SCH2 + O2 .fwdarw. CH3SCH2O2 and CH3SCH2O2 + NO .fwdarw. CH3SCH2O + NO2. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 8442-8449		29	
44	Kinetic and mechanistic study of the self-reaction of methoxymethylperoxy radicals at room temperature. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 11712-11723		83	
43	Absolute rate constants for the reaction of CF3O2 and CF3O radicals with NO at 295 K. <i>Chemical Physics Letters</i> , 1993 , 206, 369-375	2.5	46	
42	Rate constants for the reaction of CF3O radicals with hydrocarbons at 298 K. <i>Chemical Physics Letters</i> , 1993 , 207, 498-503	2.5	28	
41	Upper limits for the rate constants of the reactions of CF3O2 and CF3O radicals with ozone at 295 K. <i>Chemical Physics Letters</i> , 1993 , 213, 433-441	2.5	34	
40	Absolute rate constants for the reaction of NO with a series of peroxy radicals in the gas phase at 295 K. <i>Chemical Physics Letters</i> , 1993 , 213, 457-464	2.5	86	
39	The reaction of nitromethane with hydrogen and deuterium atoms in the gas phase. A mechanistic study. <i>Chemical Physics Letters</i> , 1993 , 215, 257-263	2.5	7	
38	A kinetic study of the reaction of fluorine atoms with CH3F, CH3Cl, CH3Br, CF2H2, CO, CF3H, CF3CHCl2, CF3CH2F, CHF2CHF2, CF2ClCH3, CHF2CH3, and CF3CF2H at 295 \boxplus 2 K. <i>International Journal of Chemical Kinetics</i> , 1993 , 25, 651-665	1.4	61	
37	UV absorption spectrum, and kinetics and mechanism of the self reaction of CF3CF2O2 radicals in the gas phase at 295 K. <i>International Journal of Chemical Kinetics</i> , 1993 , 25, 701-717	1.4	48	
36	Spectroscopic, kinetic and mechanistic study of fluoromethylperoxo radicals in the gas phase at 298 K. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 1241-1246		43	

35	Ultraviolet absorption spectrum and kinetics and mechanism of the self-reaction of 1,1,2,2-tetrafluoroethaneperoxyl radicals in the gas phase at 298 K. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 10875-10879		11
34	Novel method for the measurement of gas-phase peroxy radical absorption spectra. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 982-986		22
33	UV absorption spectra, kinetics and mechanisms of the self-reaction of CHF2O2 radicals in the gas phase at 298 K. <i>Chemical Physics Letters</i> , 1992 , 192, 82-88	2.5	29
32	The reactions of OH radicals with chloroalkanes in the temperature range 295B60 K. <i>Chemical Physics Letters</i> , 1992 , 194, 123-127	2.5	12
31	Pulse radiolysis and fourier transform infrared study of neopentyl peroxy radicals in the gas phase at 297 K. <i>International Journal of Chemical Kinetics</i> , 1992 , 24, 649-663	1.4	15
30	UV absorption spectra, kinetics, and mechanisms of the self reaction of CF3O2 radicals in the gas phase at 295 K. <i>International Journal of Chemical Kinetics</i> , 1992 , 24, 1009-1021	1.4	56
29	Ultraviolet absorption spectra and kinetics of the self-reaction of bromomethyl and peroxybromomethyl radicals in the gas phase at 298 K. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 871	4-8719	38
28	An absolute- and relative-rate study of the gas-phase reaction of OH radicals and Cl atoms with n-alkyl nitrates. <i>Chemical Physics Letters</i> , 1991 , 178, 163-170	2.5	34
27	Rate constants for the gas-phase reactions of OH radicals with CH3CHF2 and CHC12CF3 over the temperature range 295B88 K. <i>Chemical Physics Letters</i> , 1991 , 187, 286-290	2.5	10
26	UV absorption spectra and kinetics of the self reaction of CFCl2CH2O2 and CF2ClCH2O2 radicals in the gas phase at 298 K. <i>International Journal of Chemical Kinetics</i> , 1991 , 23, 785-798	1.4	15
25	Rate constants for the gas-phase reactions of OH radicals and Cl atoms with n-alkyl nitrites at atmospheric pressure and 298 K. <i>International Journal of Chemical Kinetics</i> , 1991 , 23, 1095-1109	1.4	32
24	Ultraviolet absorption spectra and kinetics of CH3S and CH2SH radicals. <i>Chemical Physics Letters</i> , 1991 , 182, 643-648	2.5	21
23	Pulse radiolysis study of CF3CFHO2 radicals in the gas phase at 298 K. <i>Chemical Physics Letters</i> , 1991 , 187, 33-39	2.5	39
22	Rate constants for the gas-phase reactions of hydroxyl radicals with tetramethyllead and tetraethyllead. <i>Environmental Science & Environmental Scienc</i>	10.3	12
21	Ultraviolet absorption spectra and kinetics of acetonyl and acetonylperoxy radicals. <i>Chemical Physics Letters</i> , 1990 , 173, 206-210	2.5	35
20	Kinetics and mechanism for the oxidation of 1,1,1-trichloroethane. <i>International Journal of Chemical Kinetics</i> , 1990 , 22, 577-590	1.4	50
19	Rate constants for the reactions of OH radicals and Cl atoms with diethyl sulfide, Di-n-propyl sulfide, and Di-n-butyl sulfide. <i>International Journal of Chemical Kinetics</i> , 1990 , 22, 603-612	1.4	27
18	Absolute and relative rate constants for the reactions of hydroxyl radicals and chlorine atoms with a series of aliphatic alcohols and ethers at 298 K. <i>International Journal of Chemical Kinetics</i> , 1990 , 22, 1111-1126	1.4	159

LIST OF PUBLICATIONS

17	The gas phase reactions of hydroxyl radicals with a series of nitroalkanes over the temperature range 240½00 K. <i>Chemical Physics Letters</i> , 1990 , 167, 519-523	2.5	17	
16	Rate constants for the gas-phase reactions of OH radicals with nitroethene, 3-nitropropene and 1-nitrocyclohexene at 298 K and 1 atm. <i>Chemical Physics Letters</i> , 1990 , 168, 319-323	2.5	22	
15	An absolute and relative rate study of the reaction of oh radicals with dimethyl sulfide. <i>International Journal of Chemical Kinetics</i> , 1989 , 21, 1101-1112	1.4	19	
14	Rate constants for the gas-phase reactions of OH radicals and Cl atoms with CH3CH2NO2, CH3CH2CH2NO2, CH3CH2CH2NO2, and CH3CH2CH2CH2NO2. <i>Chemical Physics Letters</i> , 1989 , 156, 312-318	2.5	19	
13	Absolute and relative rate constants for the gas-phase reaction of OH radicals with CH3NO2, CD3NO2 and CH3CH2CH3 at 295 K and 1 ATM. <i>Chemical Physics Letters</i> , 1988 , 146, 197-203	2.5	15	
12	SO2 pressure broadening and frequency shifting of H2O absorption lines in the infrared region. <i>Molecular Physics</i> , 1987 , 62, 1111-1117	1.7	2	
11	Absolute rate constants for the gas-phase reaction of OH radicals with cyclohexane and ethane at 295 K. <i>Chemical Physics Letters</i> , 1986 , 128, 168-171	2.5	9	
10	Hydrogen atom yields in the pulse radiolysis of hydrogen. Reactions with oxygen, nitrosyl chloride, and hydrogen iodide. <i>The Journal of Physical Chemistry</i> , 1982 , 86, 2929-2935		4	
9	Infrared spectra of nitrosyl cyanide and 8 isotopically substituted species. A general harmonic force field determined from experimental data and ab initio calculations. <i>Journal of Molecular Structure</i> , 1979 , 51, 17-26	3.4	30	
8	Microwave Spectra of Thioketene and Four of Its Isotopic Species <i>Acta Chemica Scandinavica</i> , 1979 , 33a, 161-165		18	
7	Production and microwave spectra of dithioformic acid, HCSSH. <i>Journal of Molecular Spectroscopy</i> , 1978 , 69, 401-408	1.3	24	
6	Far infrared gas spectra of nitrosyl cyanide. <i>Journal of Molecular Structure</i> , 1978 , 49, 97-104	3.4	13	
5	Selenoketene substitution structure. <i>Chemical Physics Letters</i> , 1978 , 55, 36-39	2.5	12	
4	Formation, microwave spectrum and preliminary structure of selenoketene. <i>Chemical Physics Letters</i> , 1978 , 53, 374-376	2.5	18	
3	HCN and HNC dimers. A new and stable variant. <i>Chemical Physics Letters</i> , 1978 , 59, 330-333	2.5	28	
2	The preparation of nitrosyl cyanide, ONCN, and 8 isotopic species. <i>Journal of Labelled Compounds and Radiopharmaceuticals</i> , 1978 , 15, 715-722	1.9	3	
1	Comparable ab initio Calculated Energies of HCNS, CNSH, NCSH and HNCS. Optimized Geometries and Dipole Moments <i>Acta Chemica Scandinavica</i> , 1977 , 31a, 666-668		32	