Jiri Jaros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2436427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a <i>k</i> -space pseudospectral method. Journal of the Acoustical Society of America, 2012, 131, 4324-4336.	1.1	372
2	Parallel Genetic Algorithm on the CUDA Architecture. Lecture Notes in Computer Science, 2010, , 442-451.	1.3	104
3	Accurate simulation of transcranial ultrasound propagation for ultrasonic neuromodulation and stimulation. Journal of the Acoustical Society of America, 2017, 141, 1726-1738.	1.1	103
4	Modelling elastic wave propagation using the k-Wave MATLAB Toolbox. , 2014, , .		55
5	Full-wave nonlinear ultrasound simulation on distributed clusters with applications in high-intensity focused ultrasound. International Journal of High Performance Computing Applications, 2016, 30, 137-155.	3.7	50
6	Experimental Validation of k-Wave: Nonlinear Wave Propagation in Layered, Absorbing Fluid Media. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 81-91.	3.0	38
7	Representing arbitrary acoustic source and sensor distributions in Fourier collocation methods. Journal of the Acoustical Society of America, 2019, 146, 278-288.	1.1	34
8	Rapid calculation of acoustic fields from arbitrary continuous-wave sources. Journal of the Acoustical Society of America, 2018, 143, 529-537.	1.1	28
9	Multi-GPU island-based genetic algorithm for solving the knapsack problem. , 2012, , .		26
10	Modelling nonlinear ultrasound propagation in absorbing media using the k-Wave toolbox: experimental validation. , 2012, , .		21
11	Full Modeling of High-Intensity Focused Ultrasound and Thermal Heating in the Kidney Using Realistic Patient Models. IEEE Transactions on Biomedical Engineering, 2018, 65, 969-979.	4.2	20
12	Control of broadband optically generated ultrasound pulses using binary amplitude holograms. Journal of the Acoustical Society of America, 2016, 139, 1637-1647.	1.1	19
13	Nonlinear ultrasound simulation in an axisymmetric coordinate system using a <i>k</i> -space pseudospectral method. Journal of the Acoustical Society of America, 2020, 148, 2288-2300.	1.1	18
14	Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the Kidney. , 2016, 2016, 5648-5651.		15
15	A Fair Comparison of Modern CPUs and GPUs Running the Genetic Algorithm under the Knapsack Benchmark. Lecture Notes in Computer Science, 2012, , 426-435.	1.3	14
16	Broadband All-Optical Plane-Wave Ultrasound Imaging System Based on a Fabry–Perot Scanner. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 1007-1016.	3.0	13
17	Full Modeling of High-Intensity Focused Ultrasound and Thermal Heating in the Kidney Using Realistic Patient Models. IEEE Transactions on Biomedical Engineering, 2018, 65, 2660-2670.	4.2	12
18	Acceleration of grammatical evolution using graphics processing units. , 2011, , .		10

IF # ARTICLE CITATIONS Advanced photoacoustic image reconstruction using the k-Wave toolbox. Proceedings of SPIE, 2016, , . Beam distortion due to gold fiducial markers during salvage highâ€intensity focused ultrasound in the 20 3.0 8 prostate. Medical Physics, 2017, 44, 679-693. Parallel BMDA with probability model migration., 2007, , . Parallel Bivariate Marginal Distribution Algorithm with Probability Model Migration. Studies in 7 22 0.9 Computational Intelligence, 2008, , 3-23. Complexity of Collective Communications on NoCs., 0,,. 6 24 Solving the Multidimensional Knapsack Problem using a CUDA accelerated PSO., 2014, , . 6 Transurethral ultrasound therapy of the prostate in the presence of calcifications: A simulation study. Medical Physics, 2018, 45, 4793-4805. An evolutionary approach to collective communication scheduling., 2007, , . 26 5 Evolutionary optimization of multistage interconnection networks performance., 2009, , . 28 Optimizing Collective Communications on 2D-Mesh and Fat Tree NoC., 2010, , . 5 Implementation of 3D FFTs Across Multiple GPUs in Shared Memory Environments., 2012,,. 30 Design of HIFU treatment plans using an evolutionary strategy., 2018, , . 5 Parallelisation of the 3D Fast Fourier Transform Using the Hybrid OpenMP/MPI Decomposition. Lecture 1.3 Notes in Computer Science, 2014, , 100-112. Many Core Acceleration of the Boundary Element Method. Lecture Notes in Computer Science, 2016, , 32 1.3 4 116-125. The Investigation of the ARMv7 and Intel Haswell Architectures Suitability for Performance and 1.3 Energy-Aware Computing. Lecture Notes in Computer Science, 2017, , 377-393. Spectral Domain Decomposition Using Local Fourier Basis: Application to Ultrasound Simulation on a 34 0.4 4 Cluster of GPUs. Supercomputing Frontiers and Innovations, 2016, 3, . Performance and accuracy analysis of nonlinear k-Wave simulations using local domain decomposition with an 8-GPU server. Proceedings of Meetings on Acoustics, 2018, , . 36 Efficient Low-Resource Compression of HIFU Data. Information (Switzerland), 2018, 9, 155. 2.9 3

JIRI JAROS

Jiri Jaros

#	Article	IF	CITATIONS
37	k-Dispatch. , 2020, , .		3
38	Weighted Decomposition in High-Performance Lattice-Boltzmann Simulations: Are Some Lattice Sites More Equal than Others?. Lecture Notes in Computer Science, 2015, , 28-38.	1.3	3
39	Advanced Bayesian optimization algorithms applied in decomposition problems. , 0, , .		2
40	Migration of probabilistic models for island-based bivariate EDA algorithm. , 2007, , .		2
41	Parallel BMDA with an aggregation of probability models. , 2009, , .		2
42	Accelerated Design of HIFU Treatment Plans Using Island-Based Evolutionary Strategy. Lecture Notes in Computer Science, 2020, , 463-478.	1.3	2
43	Performance of Collective Communications on Interconnection Networks with Fat nodes and Edges. , $0, , .$		1
44	Optimum Topology-Aware Scheduling of Many-to-Many Collective Communications. , 2007, , .		1
45	An evolutionary design technique for collective communications on optimal diameter-degree networks. , 2008, , .		1
46	Evolutionary-based conflict-free scheduling of collective communications on spidergon NoCs. , 2010, , .		1
47	GPU-accelerated evolutionary design of the complete exchange communication on wormhole networks. , 2014, , .		1
48	Optimisation of Water Management Systems Using a GPU-Accelerated Differential Evolution. , 2015, , .		1
49	Efficient lossy compression of ultrasound data. , 2017, , .		1
50	GPU-Accelerated Simulation of Elastic Wave Propagation. , 2018, , .		1
51	Evaluation of the Suitability of Intel Xeon Phi Clusters for the Simulation of Ultrasound Wave Propagation Using Pseudospectral Methods. Lecture Notes in Computer Science, 2019, , 577-590.	1.3	1
52	Evolutionary Design of Fault Tolerant Collective Communications. Lecture Notes in Computer Science, 0, , 261-272.	1.3	1
53	Pseudospectral Time-Domain (PSTD) Methods for the Wave Equation: Realizing Boundary Conditions with Discrete Sine and Cosine Transforms. Journal of Theoretical and Computational Acoustics, 2021, 29, .	1.1	1
54	Evolutionary Design of OAB and AAB Communication Schedules for Networking Systems on Chips. , 0, , .		0

#	Article	IF	CITATIONS
55	The Effect of Tissue Physiological Variability on Transurethral Ultrasound Therapy of the Prostate. , 2018, 2018, 5701-5704.		0
56	Distributed evolutionary design of HIFU treatment plans. , 2021, , .		0
57	Distributed Evolutionary Design of High Intensity Focused Ultrasound Treatment Plans [*] ., 2021, , .		0