Ali Sharifi-Zarchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2436371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pan-cancer analysis of microRNA expression profiles highlights microRNAs enriched in normal body cells as effective suppressors of multiple tumor types: A study based on TCGA database. PLoS ONE, 2022, 17, e0267291.	2.5	7
2	Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS ONE, 2022, 17, e0267847.	2.5	20
3	Defining microRNA signatures of hair follicular stem and progenitor cells in healthy and androgenic alopecia patients. Journal of Dermatological Science, 2021, 101, 49-57.	1.9	15
4	A novel metabolic disorder in the degradation pathway of endogenous methanol due to a mutation in the gene of alcohol dehydrogenase. Clinical Biochemistry, 2021, 90, 66-72.	1.9	2
5	Downregulation of <i>ITM2A</i> Gene Expression in Macrophages of Patients with Ankylosing Spondylitis. International Archives of Allergy and Immunology, 2021, 182, 1113-1121.	2.1	2
6	StrongestPath: a Cytoscape application for protein–protein interaction analysis. BMC Bioinformatics, 2021, 22, 352.	2.6	19
7	Expression and Function of C1orf132 Long-Noncoding RNA in Breast Cancer Cell Lines and Tissues. International Journal of Molecular Sciences, 2021, 22, 6768.	4.1	5
8	miR-361-5p as a promising qRT-PCR internal control for tumor and normal breast tissues. PLoS ONE, 2021, 16, e0253009.	2.5	4
9	DNA-RNA Hybrid (R-Loop): From a Unified Picture of the Mammalian Telomere to the Genome-Wide Profile. Cells, 2021, 10, 1556.	4.1	6
10	PIAS2-mediated blockade of IFN-β signaling: a basis for sporadic Parkinson disease dementia. Molecular Psychiatry, 2021, 26, 6083-6099.	7.9	30
11	Dysregulation of ribosome-related genes in ankylosing spondylitis: a systems biology approach and experimental method. BMC Musculoskeletal Disorders, 2021, 22, 789.	1.9	3
12	Determination of genetic characterization and circulation pattern of Respiratory Syncytial Virus (RSV) in children with a respiratory infection, Tehran, Iran, during 2018-2019. Virus Research, 2021, 305, 198564.	2.2	4
13	Evaluation of the Ankylosing Spondylitis Transcriptome for Oxidative Phosphorylation Pathway: The Shared Pathway with Neurodegenerative Diseases. Iranian Journal of Allergy, Asthma and Immunology, 2021, 20, 563-573.	0.4	4
14	A novel panel of blood-based microRNAs capable of discrimination between benign breast disease and breast cancer at early stages. RNA Biology, 2021, 18, 747-756.	3.1	4
15	MicroRNA profiling reveals important functions of miR-125b and let-7a during human retinal pigment epithelial cell differentiation. Experimental Eye Research, 2020, 190, 107883.	2.6	20
16	Temporal activation of LRHâ€1 and RARâ€Î³ in human pluripotent stem cells induces a functional naÃ⁻veâ€like state. EMBO Reports, 2020, 21, e47533.	4.5	6
17	PyGTED: Python Application for Computing Graph Traversal Edit Distance. Journal of Computational Biology, 2020, 27, 436-439.	1.6	2
18	An integrative Bayesian network approach to highlight key drivers in systemic lupus erythematosus. Arthritis Research and Therapy, 2020, 22, 156.	3.5	11

ALI SHARIFI-ZARCHI

#	Article	IF	CITATIONS
19	Graph Traversal Edit Distance and Extensions. Journal of Computational Biology, 2020, 27, 317-329.	1.6	4
20	Down-Regulation of miR-200c and Up-Regulation of miR-30c Target both Stemness and Metastasis Genes in Breast Cancer. Cell Journal, 2020, 21, 467-478.	0.2	17
21	Genome-wide DNA methylation profiling in ectopic and eutopic of endometrial tissues. Journal of Assisted Reproduction and Genetics, 2019, 36, 1743-1752.	2.5	14
22	Genome-Wide Distribution of Nascent Transcripts in Sperm DNA, Products of a Late Wave of General Transcription. Cells, 2019, 8, 1196.	4.1	6
23	The metabolic network model of primed/naive human embryonic stem cells underlines the importance of oxidation-reduction potential and tryptophan metabolism in primed pluripotency. Cell and Bioscience, 2019, 9, 71.	4.8	6
24	An integrated analysis to predict microâ€RNAs targeting both stemness and metastasis in breast cancer stem cells. Journal of Cellular and Molecular Medicine, 2019, 23, 2442-2456.	3.6	15
25	Enhanced Waddington landscape model with cell–cell communication can explain molecular mechanisms of self-organization. Bioinformatics, 2019, 35, 4081-4088.	4.1	3
26	Cell Identity Codes: Understanding Cell Identity from Gene Expression Profiles using Deep Neural Networks. Scientific Reports, 2019, 9, 2342.	3.3	14
27	DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome. Scientific Reports, 2019, 9, 16526.	3.3	32
28	The assessment of efficient representation of drug features using deep learning for drug repositioning. BMC Bioinformatics, 2019, 20, 577.	2.6	16
29	Analysis of gene expression profiles and protein-protein interaction networks in multiple tissues of systemic sclerosis. BMC Medical Genomics, 2019, 12, 199.	1.5	34
30	Downregulation of Extracellular Matrix and Cell Adhesion Molecules in Cumulus Cells of Infertile Polycystic Ovary Syndrome Women with and without Insulin Resistance. Cell Journal, 2019, 21, 35-42.	0.2	15
31	GTED: Graph Traversal Edit Distance. Lecture Notes in Computer Science, 2018, , 37-53.	1.3	1
32	Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians. Zoological Letters, 2018, 4, 24.	1.3	38
33	Machine Learning and Network Analysis of Molecular Dynamics Trajectories Reveal Two Chains of Red/Ox-specific Residue Interactions in HumanÂProtein Disulfide Isomerase. Scientific Reports, 2017, 7, 3666.	3.3	33
34	Blockage of the Epithelial-to-Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation. Stem Cell Reports, 2017, 9, 1275-1290.	4.8	12
35	Small RNA Sequencing Reveals Dlk1-Dio3 Locus-Embedded MicroRNAs as Major Drivers of Ground-State Pluripotency. Stem Cell Reports, 2017, 9, 2081-2096.	4.8	45
36	DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism. BMC Genomics, 2017, 18, 964.	2.8	80

ALI SHARIFI-ZARCHI

#	Article	IF	CITATIONS
37	Comparative Evaluation of Human Dental Pulp and Follicle Stem Cell Commitment. Cell Journal, 2017, 18, 609-618.	0.2	15
38	Proteome Analysis of Ground State Pluripotency. Scientific Reports, 2016, 5, 17985.	3.3	31
39	Increased robustness of early embryogenesis through collective decision-making by key transcription factors. BMC Systems Biology, 2015, 9, 23.	3.0	9
40	A Universal and Robust Integrated Platform for the Scalable Production of Human Cardiomyocytes From Pluripotent Stem Cells. Stem Cells Translational Medicine, 2015, 4, 1482-1494.	3.3	104
41	Inhibition of TGFβ Signaling Promotes Ground State Pluripotency. Stem Cell Reviews and Reports, 2014, 10, 16-30.	5.6	60
42	ARYANA: Aligning Reads by Yet Another Approach. BMC Bioinformatics, 2014, 15, S12.	2.6	0
43	Natural Biased Coin Encoded in the Genome Determines Cell Strategy. PLoS ONE, 2014, 9, e103569.	2.5	3
44	Treatment of Human Embryonic Stem Cells with Different Combinations of Priming and Inducing Factors Toward Definitive Endoderm. Stem Cells and Development, 2013, 22, 1419-1432.	2.1	34
45	Transversals in long rectangular arrays. Discrete Mathematics, 2006, 306, 3011-3013.	0.7	3
46	Common-Deadline Lazy Bureaucrat Scheduling Problems. Lecture Notes in Computer Science, 2003, , 59-66.	1.3	6