
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2436268/publications.pdf Version: 2024-02-01

IEAN D METZCED

#	Article	IF	CITATIONS
1	Roads and forest edges facilitate yellow fever virus dispersion. Journal of Applied Ecology, 2022, 59, 4-17.	1.9	19
2	The value of biotic pollination and dense forest for fruit set of Arabica coffee: A global assessment. Agriculture, Ecosystems and Environment, 2022, 323, 107680.	2.5	21
3	Positive forest cover effects on coffee yields are consistent across regions. Journal of Applied Ecology, 2022, 59, 330-341.	1.9	12
4	Restoration priorities for Caatinga dry forests: Landscape resilience, connectivity and biodiversity value. Journal of Applied Ecology, 2022, 59, 2287-2298.	1.9	9
5	Turnover rates of regenerated forests challenge restoration efforts in the Brazilian Atlantic forest. Environmental Research Letters, 2022, 17, 045009.	2.2	13
6	Forest cover and proximity to forest affect predation by natural enemies in pasture and coffee plantations differently. Agriculture, Ecosystems and Environment, 2022, 333, 107958.	2.5	8
7	Landscape composition regulates the spillover of beneficial insects between forest remnants and adjacent coffee plantations. Perspectives in Ecology and Conservation, 2022, 20, 111-116.	1.0	5
8	AMAZONIA CAMTRAP: A data set of mammal, bird, and reptile species recorded with camera traps in the Amazon forest. Ecology, 2022, 103, e3738.	1.5	6
9	Do conservation covenants consider the delivery of ecosystem services?. Environmental Science and Policy, 2021, 115, 99-107.	2.4	17
10	Conservation implications of a limited avian cross-habitat spillover in pasture lands. Biological Conservation, 2021, 253, 108898.	1.9	15
11	Connecting governance interventions to ecosystem services provision: A socialâ€ecological network approach. People and Nature, 2021, 3, 266-280.	1.7	23
12	Moving to healthier landscapes: Forest restoration decreases the abundance of Hantavirus reservoir rodents in tropical forests. Science of the Total Environment, 2021, 752, 141967.	3.9	22
13	Landscape forest loss decreases aboveground biomass of Neotropical forests patches in moderately disturbed regions. Landscape Ecology, 2021, 36, 439-453.	1.9	11
14	Hidden destruction of older forests threatens Brazil's Atlantic Forest and challenges restoration programs. Science Advances, 2021, 7, .	4.7	92
15	The scale of effect depends on operational definition of forest cover—evidence from terrestrial mammals of the Brazilian savanna. Landscape Ecology, 2021, 36, 973-987.	1.9	13
16	Conservation biology: four decades of problem- and solution-based research. Perspectives in Ecology and Conservation, 2021, 19, 121-130.	1.0	12
17	Landscape configuration of an Amazonian island-like ecosystem drives population structure and genetic diversity of a habitat-specialist bird. Landscape Ecology, 2021, 36, 2565-2582.	1.9	4
18	Achieving private conservation targets in Brazil through restoration and compensation schemes without impairing productive lands. Environmental Science and Policy, 2021, 120, 1-10.	2.4	22

#	Article	IF	CITATIONS
19	Election cycles affect deforestation within Brazil's Atlantic Forest. Conservation Letters, 2021, 14, e12818.	2.8	8
20	Maintaining momentum for collaborative working groups in a post-pandemic world. Nature Ecology and Evolution, 2021, 5, 1188-1189.	3.4	6
21	Higher forest cover and less contrasting matrices improve carrion removal service by scavenger insects in tropical landscapes. Journal of Applied Ecology, 2021, 58, 2637.	1.9	1
22	Native forest cover safeguards stream water quality under a changing climate. Ecological Applications, 2021, 31, e02414.	1.8	9
23	Integrating ecological equivalence for native vegetation compensation: A methodological approach. Land Use Policy, 2021, 108, 105568.	2.5	11
24	Private reserves suffer from the same location biases of public protected areas. Biological Conservation, 2021, 261, 109283.	1.9	4
25	Considering landscape-level processes in ecosystem service assessments. Science of the Total Environment, 2021, 796, 149028.	3.9	71
26	Avian cross-habitat spillover as a bidirectional process modulated by matrix type, forest cover and fragment size. Agriculture, Ecosystems and Environment, 2021, 322, 107644.	2.5	9
27	Testing temporal benchmarks effects on the implementation of the new Brazilian Forest Act. Environmental Science and Policy, 2021, 126, 213-222.	2.4	4
28	Offsetting impacts of development on biodiversity and ecosystem services. Ambio, 2020, 49, 892-902.	2.8	15
29	Indirect effects of habitat loss via habitat fragmentation: A cross-taxa analysis of forest-dependent species. Biological Conservation, 2020, 241, 108368.	1.9	93
30	Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People and Nature, 2020, 2, 1172-1195.	1.7	127
31	Ecosystem services at risk: integrating spatiotemporal dynamics of supply and demand to promote long-term provision. One Earth, 2020, 3, 704-713.	3.6	51
32	NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics. Ecology, 2020, 101, e03128.	1.5	26
33	Brazil's COVID-19 response. Lancet, The, 2020, 396, e30.	6.3	10
34	Forest proximity rather than local forest cover affects bee diversity and coffee pollination services. Landscape Ecology, 2020, 35, 1841-1855.	1.9	27
35	Landscape structure shapes the diversity of beneficial insects in coffee producing landscapes. Biological Conservation, 2019, 238, 108193.	1.9	30
36	Predicting the nonâ€linear collapse of plant–frugivore networks due to habitat loss. Ecography, 2019, 42, 1765-1776.	2.1	22

#	Article	IF	CITATIONS
37	Unfolding additional massive cutback effects of the Native Vegetation Protection Law on Legal Reserves, Brazil. Biota Neotropica, 2019, 19, .	0.2	10
38	Increasing effectiveness of the science-policy interface in the socioecological arena in Brazil. Biological Conservation, 2019, 240, 108227.	1.9	16
39	Collaboration across boundaries in the Amazon. Science, 2019, 366, 699-700.	6.0	11
40	Why Brazil needs its Legal Reserves. Perspectives in Ecology and Conservation, 2019, 17, 91-103.	1.0	81
41	There is hope for achieving ambitious Atlantic Forest restoration commitments. Perspectives in Ecology and Conservation, 2019, 17, 80-83.	1.0	69
42	Temporal Lag in Ecological Responses to Landscape Change: Where Are We Now?. Current Landscape Ecology Reports, 2019, 4, 70-82.	1.1	39
43	<scp>ATLANTIC BIRD TRAITS</scp> : a data set of bird morphological traits from the Atlantic forests of South America. Ecology, 2019, 100, e02647.	1.5	40
44	Payment for ecosystem services programs in the Brazilian Atlantic Forest: Effective but not enough. Land Use Policy, 2019, 82, 283-291.	2.5	79
45	Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nature Ecology and Evolution, 2019, 3, 62-70.	3.4	199
46	Is habitat fragmentation bad for biodiversity?. Biological Conservation, 2019, 230, 179-186.	1.9	329
47	Disturbance or propagule pressure? Unravelling the drivers and mapping the intensity of invasion of freeâ€ranging dogs across the Atlantic forest hotspot. Diversity and Distributions, 2019, 25, 191-204.	1.9	19
48	Scenarios and Models to Support Global Conservation Targets. Trends in Ecology and Evolution, 2019, 34, 57-68.	4.2	66
49	Landscape structure regulates pest control provided by ants in sun coffee farms. Journal of Applied Ecology, 2019, 56, 21-30.	1.9	51
50	Brazilian assessment on biodiversity and ecosystem services: summary for policy makers. Biota Neotropica, 2019, 19, .	0.2	21
51	Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1837-1842.	3.3	144
52	<scp>ATLANTIC BIRDS</scp> : a data set of bird species from the Brazilian Atlantic Forest. Ecology, 2018, 99, 497-497.	1.5	46
53	Land use type, forest cover and forest edges modulate avian crossâ€habitat spillover. Journal of Applied Ecology, 2018, 55, 1252-1264.	1.9	48
54	Lack of evidence of edge age and additive edge effects on carbon stocks in a tropical forest. Forest Ecology and Management, 2018, 407, 57-65.	1.4	17

#	Article	IF	CITATIONS
55	Are the assemblages of tree pollination modes being recovered by tropical forest restoration?. Applied Vegetation Science, 2018, 21, 156-163.	0.9	6
56	Landscapeâ€level effects on aboveground biomass of tropical forests: A conceptual framework. Global Change Biology, 2018, 24, 597-607.	4.2	22
57	The forest transition in SÃŁo Paulo, Brazil: historical patterns and potential drivers. Ecology and Society, 2018, 23, .	1.0	33
58	From hotspot to hopespot: An opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation, 2018, 16, 208-214.	1.0	379
59	Gaps and limitations in the use of restoration scenarios: a review. Restoration Ecology, 2018, 26, 1108-1119.	1.4	15
60	Biodiversity extinction thresholds are modulated by matrix type. Ecography, 2018, 41, 1520-1533.	2.1	84
61	Sumário para tomadores de decisão: 1º diagnóstico brasileiro de biodiversidade e serviços ecossistêmicos. , 2018, , .		4
62	Habitat fragmentation drives inter-population variation in dispersal behavior in a Neotropical rainforest bird. Perspectives in Ecology and Conservation, 2017, 15, 3-9.	1.0	33
63	Matrix type affects movement behavior of a Neotropical understory forest bird. Perspectives in Ecology and Conservation, 2017, 15, 10-17.	1.0	34
64	Landscape, Climate and Hantavirus Cardiopulmonary Syndrome Outbreaks. EcoHealth, 2017, 14, 614-629.	0.9	32
65	Effects of landscape structure on avian-mediated insect pest control services: a review. Landscape Ecology, 2017, 32, 931-944.	1.9	84
66	Land system science in Latin America: challenges and perspectives. Current Opinion in Environmental Sustainability, 2017, 26-27, 37-46.	3.1	44
67	Effects of bird and bat exclusion on coffee pest control at multiple spatial scales. Landscape Ecology, 2017, 32, 1907-1920.	1.9	40
68	Best practice for the use of scenarios for restoration planning. Current Opinion in Environmental Sustainability, 2017, 29, 14-25.	3.1	40
69	Observations, indicators and scenarios of biodiversity and ecosystem services change — a framework to support policy and decision-making. Current Opinion in Environmental Sustainability, 2017, 29, 198-206.	3.1	11
70	Climate change and sugarcane expansion increase Hantavirus infection risk. PLoS Neglected Tropical Diseases, 2017, 11, e0005705.	1.3	30
71	High Emigration Propensity and Low Mortality on Transfer Drives Female-Biased Dispersal of Pyriglena leucoptera in Fragmented Landscapes. PLoS ONE, 2017, 12, e0170493.	1.1	25
72	USING DIFFERENT PROXIES TO PREDICT HANTAVIRUS DISEASE RISK IN SÃO PAULO STATE, BRAZIL. Oecologia Australis, 2017, 21, 42-53.	0.1	3

#	Article	IF	CITATIONS
73	Time-Lag in Responses of Birds to Atlantic Forest Fragmentation: Restoration Opportunity and Urgency. PLoS ONE, 2016, 11, e0147909.	1.1	39
74	A stochastic model for landscape patterns of biodiversity. Ecological Monographs, 2016, 86, 462-479.	2.4	26
75	Landscape Ecology and Restoration Processes. , 2016, , 90-120.		4
76	Landscape structure influences bee community and coffee pollination at different spatial scales. Agriculture, Ecosystems and Environment, 2016, 235, 1-12.	2.5	88
77	Patch size matters for amphibians in tropical fragmented landscapes. Biological Conservation, 2016, 195, 89-96.	1.9	28
78	Teaching landscape ecology: the importance of field-oriented, inquiry-based approaches. Landscape Ecology, 2016, 31, 929-937.	1.9	4
79	Landscape genetics of a tropical rescue pollinator. Conservation Genetics, 2016, 17, 267-278.	0.8	71
80	Landscape, Environmental and Social Predictors of Hantavirus Risk in São Paulo, Brazil. PLoS ONE, 2016, 11, e0163459.	1.1	38
81	Safeguarding Ecosystem Services: A Methodological Framework to Buffer the Joint Effect of Habitat Configuration and Climate Change. PLoS ONE, 2015, 10, e0129225.	1.1	34
82	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	3.3	335
83	The IPBES Conceptual Framework — connecting nature and people. Current Opinion in Environmental Sustainability, 2015, 14, 1-16.	3.1	1,658
84	Response to Comment on $\hat{a} \in \mathfrak{C}$ Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot $\hat{a} \in \mathfrak{S}$ Science, 2015, 347, 731-731.	6.0	2
85	A landscape triage approach: combining spatial and temporal dynamics to prioritize restoration and conservation. Journal of Applied Ecology, 2015, 52, 590-601.	1.9	81
86	Atlantic forest bird communities provide different but not fewer functions after habitat loss. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142844.	1.2	57
87	Does certification improve biodiversity conservation in Brazilian coffee farms?. Forest Ecology and Management, 2015, 357, 181-194.	1.4	45
88	Funções eco-hidrológicas das florestas nativas e o Código Florestal. Estudos Avancados, 2015, 29, 151-162.	0.2	32
89	Conserving Brazil's Atlantic forests—Response. Science, 2014, 346, 1193-1193.	6.0	3
90	Experiences from the <scp>B</scp> razilian <scp>A</scp> tlantic <scp>F</scp> orest: ecological findings and conservation initiatives. New Phytologist, 2014, 204, 459-473.	3.5	341

#	Article	IF	CITATIONS
91	A Framework to Optimize Biodiversity Restoration Efforts Based on Habitat Amount and Landscape Connectivity. Restoration Ecology, 2014, 22, 169-177.	1.4	204
92	How good are tropical forest patches for ecosystem services provisioning?. Landscape Ecology, 2014, 29, 187-200.	1.9	120
93	REVIEW: Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. Journal of Applied Ecology, 2014, 51, 309-318.	1.9	290
94	Environment and dispersal paths override life strategies and residence time in determining regional patterns of invasion by alien plants. Perspectives in Plant Ecology, Evolution and Systematics, 2014, 16, 1-10.	1.1	26
95	Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science, 2014, 345, 1041-1045.	6.0	337
96	Long-term carbon loss in fragmented Neotropical forests. Nature Communications, 2014, 5, 5037.	5.8	135
97	The confounded effects of habitat disturbance at the local, patch and landscape scale on understorey birds of the Atlantic Forest: Implications for the development of landscape-based indicators. Ecological Indicators, 2013, 31, 82-88.	2.6	31
98	Combining phylogeography and landscape genetics of <i>Xenopipo atronitens</i> (Aves: Pipridae), a white sand <i>campina</i> specialist, to understand Pleistocene landscape evolution in Amazonia. Biological Journal of the Linnean Society, 2013, 110, 60-76.	0.7	56
99	HOW ARE NATIVE VEGETATION AND RESERVES AFFECTED BY DIFFERENT ROAD TYPES IN A SOUTHEASTERN BRAZILIAN STATE?. Oecologia Australis, 2013, 17, 447-458.	0.1	5
100	Challenges and Opportunities in Applying a Landscape Ecology Perspective in Ecological Restoration: a Powerful Approach to Shape Neolandscapes. Natureza A Conservacao, 2013, 11, 103-107.	2.5	14
101	Landscape Ecology Perspective in Restoration Projects for Biodiversity Conservation: a Review. Natureza A Conservacao, 2013, 11, 108-118.	2.5	53
102	A Framework for Setting Local Restoration Priorities Based on Landscape Context. Natureza A Conservacao, 2013, 11, 152-157.	2.5	19
103	Associations of Forest Cover, Fragment Area, and Connectivity with Neotropical Understory Bird Species Richness and Abundance. Conservation Biology, 2012, 26, 1100-1111.	2.4	165
104	Evaluating the legacy of landscape history: extinction debt and species credit in bird and small mammal assemblages in the <scp>B</scp> razilian <scp>A</scp> tlantic <scp>F</scp> orest. Journal of Applied Ecology, 2012, 49, 1325-1333.	1.9	57
105	Unraveling the drivers of community dissimilarity and species extinction in fragmented landscapes. Ecology, 2012, 93, 2560-2569.	1.5	82
106	Land-use and land-cover change in Atlantic Forest landscapes. Forest Ecology and Management, 2012, 278, 80-89.	1.4	137
107	A model of road effect using line integrals and a test of the performance of two new road indices using the distribution of small mammals in an Atlantic Forest landscape. Ecological Modelling, 2012, 247, 64-70.	1.2	12
108	How deforestation pattern in the Amazon influences vertebrate richness and community composition. Landscape Ecology, 2012, 27, 799-812.	1.9	41

JEAN P METZGER

#	Article	IF	CITATIONS
109	Towards environmentally sustainable agriculture in Brazil: challenges and opportunities for applied ecological research. Journal of Applied Ecology, 2012, 49, 535-541.	1.9	52
110	The importance of landscape structure for seed dispersal in rain forest fragments. Journal of Vegetation Science, 2012, 23, 1126-1136.	1.1	52
111	Decisions on Temporal Sampling Protocol Influence the Detection of Ecological Patterns. Biotropica, 2012, 44, 378-385.	0.8	18
112	Using binary and probabilistic habitat availability indices derived from graph theory to model bird occurrence in fragmented forests. Landscape Ecology, 2012, 27, 185-198.	1.9	53
113	The Brazilian Atlantic Forest: A Shrinking Biodiversity Hotspot. , 2011, , 405-434.		161
114	Some more biofuel lessons from Brazil. Nature, 2011, 475, 455-455.	13.7	2
115	Successful carnivore identification with faecal DNA across a fragmented Amazonian landscape. Molecular Ecology Resources, 2011, 11, 862-871.	2.2	29
116	Comparing species and measures of landscape structure as indicators of conservation importance. Journal of Applied Ecology, 2011, 48, 706-714.	1.9	63
117	Isolation determines patterns of species presence in highly fragmented landscapes. Ecography, 2011, 34, 1018-1029.	2.1	69
118	Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests. Ecological Modelling, 2011, 222, 1986-1997.	1.2	107
119	Effects of species turnover on reserve site selection in a fragmented landscape. Biodiversity and Conservation, 2011, 20, 1057-1072.	1.2	10
120	Vanishing bird species in the Atlantic Forest: relative importance of landscape configuration, forest structure and species characteristics. Biodiversity and Conservation, 2011, 20, 3627-3643.	1.2	55
121	The matrix-tolerance hypothesis: an empirical test with frogs in the Atlantic Forest. Biodiversity and Conservation, 2010, 19, 3059-3071.	1.2	31
122	Variety matters: adaptive genetic diversity and parasite load in two mouse opossums from the Brazilian Atlantic forest. Conservation Genetics, 2010, 11, 2001-2013.	0.8	27
123	Landscape perception by forest understory birds in the Atlantic Rainforest: black-and-white versus shades of grey. Landscape Ecology, 2010, 25, 407-417.	1.9	36
124	Microhabitat Selection of three Forest Understory Birds in the Brazilian Atlantic Rainforest. Biotropica, 2010, 42, 355-362.	0.8	7
125	Edge effects as the principal cause of area effects on birds in fragmented secondary forest. Oikos, 2010, 119, 918-926.	1.2	142
126	Beyond the Fragmentation Threshold Hypothesis: Regime Shifts in Biodiversity Across Fragmented Landscapes. PLoS ONE, 2010, 5, e13666.	1.1	452

JEAN P METZGER

#	Article	IF	CITATIONS
127	Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic Forest. Forest Ecology and Management, 2010, 259, 410-417.	1.4	160
128	Rural property size drives patterns of upland and riparian forest retention in a tropical deforestation frontier. Global Environmental Change, 2010, 20, 705-712.	3.6	50
129	Prospects for biodiversity conservation in the Atlantic Forest: Lessons from aging human-modified landscapes. Biological Conservation, 2010, 143, 2328-2340.	1.9	355
130	Brazilian Law: Full Speed in Reverse?. Science, 2010, 329, 276-277.	6.0	97
131	Biodiversity Conservation Research, Training, and Policy in São Paulo. Science, 2010, 328, 1358-1359.	6.0	86
132	O Código Florestal Tem Base CientÃfica?. Natureza A Conservacao, 2010, 08, 92-99.	2.5	93
133	The impact of fragmentation and density regulation on forest succession in the Atlantic rain forest. Ecological Modelling, 2009, 220, 2450-2459.	1.2	58
134	Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales?. Landscape Ecology, 2009, 24, 907-918.	1.9	107
135	Habitat fragmentation reduces genetic diversity and connectivity among toad populations in the Brazilian Atlantic Coastal Forest. Biological Conservation, 2009, 142, 1560-1569.	1.9	257
136	Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biological Conservation, 2009, 142, 1166-1177.	1.9	316
137	The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 2009, 142, 1141-1153.	1.9	2,882
138	Modeling landscape dynamics in an Atlantic Rainforest region: Implications for conservation. Forest Ecology and Management, 2009, 257, 1219-1230.	1.4	141
139	Are corridors, fragment size and forest structure important for the conservation of leaf-litter lizards in a fragmented landscape?. Oryx, 2009, 43, 435.	0.5	20
140	Can agroforest woodlots work as stepping stones for birds in the Atlantic forest region?. Biodiversity and Conservation, 2008, 17, 1907-1922.	1.2	127
141	Landscape ecology: perspectives based on the 2007 IALE world congress. Landscape Ecology, 2008, 23, 501-504.	1.9	20
142	Importance of Interhabitat Gaps and Stepping‣tones for Lesser Woodcreepers (<i>Xiphorhynchus) Tj ETQq0 (</i>	0 റ്റെട്ടുBT /C)verlock 10 T
143	Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: a test with Atlantic forest small mammals. Ecography, 2008, 31, 359-370.	2.1	118

#	Article	IF	CITATIONS
145	Movements of neotropical understory passerines affected by anthropogenic forest edges in the Brazilian Atlantic rainforest. Biological Conservation, 2008, 141, 782-791.	1.9	63
146	Relative effects of fragment size and connectivity on bird community in the Atlantic Rain Forest: Implications for conservation. Biological Conservation, 2008, 141, 2184-2192.	1.9	183
147	Comparative range use by three Atlantic Forest understorey bird species in relation to forest fragmentation. Journal of Tropical Ecology, 2008, 24, 291-299.	0.5	42
148	Relief influence on tree species richness in secondary forest fragments of Atlantic Forest, SE, Brazil. Acta Botanica Brasilica, 2008, 22, 589-598.	0.8	20
149	Estádio sucessional e fatores geográficos como determinantes da similaridade florÃstica entre comunidades florestais no Planalto Atlântico, Estado de São Paulo, Brasil. Acta Botanica Brasilica, 2008, 22, 51-62.	0.8	28
150	Importance of estimating matrix quality for modeling species distribution in complex tropical landscapes: a test with Atlantic forest small mammals. Ecography, 2008, .	2.1	5
151	Produção de serapilheira em floresta Atlântica secundária numa paisagem fragmentada (Ibiúna, SP): importância da borda e tamanho dos fragmentos. Revista Brasileira De Botanica, 2007, 30, 521-532.	0.5	19
152	Diagnóstico da pesquisa em ecologia de paisagens no Brasil (2000-2005). Biota Neotropica, 2007, 7, 21-29.	1.0	5
153	Efficiency of playback for assessing the occurrence of five bird species in Brazilian Atlantic Forest fragments. Anais Da Academia Brasileira De Ciencias, 2006, 78, 629-644.	0.3	32
154	Uma área de relevante interesse biológico, porém pouco conhecida: a Reserva Florestal do Morro Grande. Biota Neotropica, 2006, 6, .	1.0	33
155	Chuva de sementes em fragmentos de Floresta Atlântica (São Paulo, SP, Brasil), sob diferentes situações de conectividade, estrutura florestal e proximidade da borda. Acta Botanica Brasilica, 2006, 20, 845-859.	0.8	30
156	Aspectos da composição e diversidade do componente arbóreo das florestas da Reserva Florestal do Morro Grande, Cotia, SP. Biota Neotropica, 2006, 6, .	1.0	29
157	Thresholds in landscape structure for three common deforestation patterns in the Brazilian Amazon. Landscape Ecology, 2006, 21, 1061-1073.	1.9	76
158	Do diagnóstico à conservação da biodiversidade: o estado da arte do programa BIOTA/FAPESP. Biota Neotropica, 2006, 6, .	1.0	17
159	A regeneração florestal em áreas de floresta secundária na Reserva Florestal do Morro Grande, Cotia, SP. Biota Neotropica, 2006, 6, .	1.0	32
160	CaracterÃsticas ecológicas e implicações para a conservação da Reserva Florestal do Morro Grande. Biota Neotropica, 2006, 6, .	1.0	13
161	Influence of matrix habitats on the occurrence of insectivorous bird species in Amazonian forest fragments. Biological Conservation, 2005, 122, 441-451.	1.9	178
162	Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biological Conservation, 2005, 123, 507-519.	1.9	255

#	Article	IF	CITATIONS
163	The role of forest structure, fragment size and corridors in maintaining small mammal abundance and diversity in an Atlantic forest landscape. Biological Conservation, 2005, 124, 253-266.	1.9	350
164	Effects of slash-and-burn fallow periods on landscape structure. Environmental Conservation, 2003, 30, 325-333.	0.7	47
165	Title is missing!. Landscape Ecology, 2002, 17, 419-431.	1.9	55
166	Effects of deforestation pattern and private nature reserves on the forest conservation in settlement areas of the Brazilian Amazon. Biota Neotropica, 2001, 1, 1-14.	1.0	13
167	O que $ ilde{A}$ © ecologia de paisagens?. Biota Neotropica, 2001, 1, 1-9.	0.2	64
168	TREE FUNCTIONAL GROUP RICHNESS AND LANDSCAPE STRUCTURE IN A BRAZILIAN TROPICAL FRAGMENTED LANDSCAPE. , 2000, 10, 1147-1161.		141
169	Changements de la structure du paysage et richesse spécifique des fragments forestiers dans le sud-est du Brésil. Comptes Rendus De L'Académie Des Sciences Série 3, Sciences De La Vie, 1998, 321, 319-333.	0.8	3
170	The structural connectivity threshold: An hypothesis in conservation biology at the landscape scale. Acta Oecologica, 1997, 18, 1-12.	0.5	133
171	Relationships between landscape structure and tree species diversity in tropical forests of South-East Brazil. Landscape and Urban Planning, 1997, 37, 29-35.	3.4	49
172	Pattern of tree species diversity in riparian forest fragments of different widths (SE Brazil). Plant Ecology, 1997, 133, 135-152.	0.7	54
173	Characterizing the complexity of landscape boundaries by remote sensing. Landscape Ecology, 1996, 11, 65-77.	1.9	59
174	Balanced spatial distribution of green areas creates healthier urban landscapes. Journal of Applied Ecology, 0, , .	1.9	4