Maciek R Antoniewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2436164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elementary metabolite units (EMU): A novel framework for modeling isotopic distributions. Metabolic Engineering, 2007, 9, 68-86.	3.6	514
2	A roadmap for interpreting 13 C metabolite labeling patterns from cells. Current Opinion in Biotechnology, 2015, 34, 189-201.	3.3	513
3	Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metabolic Engineering, 2006, 8, 324-337.	3.6	423
4	Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nature Communications, 2018, 9, 446.	5.8	311
5	Quantifying Reductive Carboxylation Flux of Glutamine to Lipid in a Brown Adipocyte Cell Line. Journal of Biological Chemistry, 2008, 283, 20621-20627.	1.6	265
6	Accurate Assessment of Amino Acid Mass Isotopomer Distributions for Metabolic Flux Analysis. Analytical Chemistry, 2007, 79, 7554-7559.	3.2	247
7	An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnology and Bioengineering, 2008, 99, 686-699.	1.7	241
8	Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metabolic Engineering, 2011, 13, 598-609.	3.6	222
9	Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metabolic Engineering, 2007, 9, 277-292.	3.6	217
10	Methods and advances in metabolic flux analysis: a mini-review. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 317-325.	1.4	192
11	A guide to 13C metabolic flux analysis for the cancer biologist. Experimental and Molecular Medicine, 2018, 50, 1-13.	3.2	165
12	Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6477-6482.	3.3	154
13	Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd-Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes. PLoS ONE, 2015, 10, e0145850.	1.1	153
14	Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metabolic Engineering, 2017, 39, 49-59.	3.6	137
15	Parallel labeling experiments with [1,2-13C]glucose and [U-13C]glutamine provide new insights into CHO cell metabolism. Metabolic Engineering, 2013, 15, 34-47.	3.6	132
16	High-resolution 13C metabolic flux analysis. Nature Protocols, 2019, 14, 2856-2877.	5.5	132
17	CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion. Nature Communications, 2016, 7, 12800.	5.8	128
18	COMPLETE-MFA: Complementary parallel labeling experiments technique for metabolic flux analysis. Metabolic Engineering, 2013, 20, 49-55.	3.6	121

#	Article	IF	CITATIONS
19	Central metabolic responses to the overproduction of fatty acids in <i>Escherichia coli</i> based on ¹³ Câ€metabolic flux analysis. Biotechnology and Bioengineering, 2014, 111, 575-585.	1.7	112
20	Measuring Deuterium Enrichment of Glucose Hydrogen Atoms by Gas Chromatography/Mass Spectrometry. Analytical Chemistry, 2011, 83, 3211-3216.	3.2	111
21	Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnology Journal, 2012, 7, 61-74.	1.8	107
22	Dynamic metabolic flux analysis (DMFA): A framework for determining fluxes at metabolic non-steady state. Metabolic Engineering, 2011, 13, 745-755.	3.6	102
23	13C metabolic flux analysis: optimal design of isotopic labeling experiments. Current Opinion in Biotechnology, 2013, 24, 1116-1121.	3.3	100
24	Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis. Metabolic Engineering, 2017, 39, 9-18.	3.6	99
25	Integrated 13 C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. Metabolic Engineering, 2015, 28, 151-158.	3.6	94
26	Rational design of 13C-labeling experiments for metabolic flux analysis in mammalian cells. BMC Systems Biology, 2012, 6, 43.	3.0	93
27	Publishing 13C metabolic flux analysis studies: A review and future perspectives. Metabolic Engineering, 2013, 20, 42-48.	3.6	91
28	Tandem mass spectrometry: A novel approach for metabolic flux analysis. Metabolic Engineering, 2011, 13, 225-233.	3.6	90
29	Dynamic metabolic flux analysis—tools for probing transient states of metabolic networks. Current Opinion in Biotechnology, 2013, 24, 973-978.	3.3	89
30	Parallel labeling experiments with [U-13C]glucose validate E. coli metabolic network model for 13C metabolic flux analysis. Metabolic Engineering, 2012, 14, 533-541.	3.6	86
31	Genome-Scale Metabolic Model for the Green Alga <i>Chlorella vulgaris</i> UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions. Plant Physiology, 2016, 172, 589-602.	2.3	86
32	Resolving the TCA cycle and pentoseâ€phosphate pathway of <i>Clostridium acetobutylicum</i> ATCC 824: Isotopomer analysis, <i>in vitro</i> activities and expression analysis. Biotechnology Journal, 2011, 6, 300-305.	1.8	82
33	13C-metabolic flux analysis of co-cultures: A novel approach. Metabolic Engineering, 2015, 31, 132-139.	3.6	79
34	Measuring Complete Isotopomer Distribution of Aspartate Using Gas Chromatography/Tandem Mass Spectrometry. Analytical Chemistry, 2012, 84, 4628-4632.	3.2	78
35	Selection of tracers for 13C-Metabolic Flux Analysis using Elementary Metabolite Units (EMU) basis vector methodology. Metabolic Engineering, 2012, 14, 150-161.	3.6	78
36	Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph. Metabolic Engineering, 2018, 45, 75-85.	3.6	74

MACIEK R ANTONIEWICZ

#	Article	IF	CITATIONS
37	Parallel labeling experiments and metabolic flux analysis: Past, present and future methodologies. Metabolic Engineering, 2013, 16, 21-32.	3.6	73
38	Quantifying Biomass Composition by Gas Chromatography/Mass Spectrometry. Analytical Chemistry, 2014, 86, 9423-9427.	3.2	70
39	Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 222-227.	3.3	70
40	Optimal tracers for parallel labeling experiments and 13C metabolic flux analysis: A new precision and synergy scoring system. Metabolic Engineering, 2016, 38, 10-18.	3.6	68
41	A guide to metabolic flux analysis in metabolic engineering: Methods, tools and applications. Metabolic Engineering, 2021, 63, 2-12.	3.6	67
42	Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by 13C metabolic flux analysis. Metabolic Engineering, 2017, 44, 191-197.	3.6	63
43	Fast growth phenotype of E. coli K-12 from adaptive laboratory evolution does not require intracellular flux rewiring. Metabolic Engineering, 2017, 44, 100-107.	3.6	59
44	Methanol assimilation in Escherichia coli is improved by co-utilization of threonine and deletion of leucine-responsive regulatory protein. Metabolic Engineering, 2018, 45, 67-74.	3.6	59
45	Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for 13C metabolic flux analysis. Metabolic Engineering, 2014, 26, 23-33.	3.6	57
46	Parallel labeling experiments for pathway elucidation and 13C metabolic flux analysis. Current Opinion in Biotechnology, 2015, 36, 91-97.	3.3	57
47	Tandem mass spectrometry for measuring stable-isotope labeling. Current Opinion in Biotechnology, 2013, 24, 48-53.	3.3	56
48	Evolution of E. coli on [U-13C]Glucose Reveals a Negligible Isotopic Influence on Metabolism and Physiology. PLoS ONE, 2016, 11, e0151130.	1.1	54
49	Synthetic methylotrophy: Strategies to assimilate methanol for growth and chemicals production. Current Opinion in Biotechnology, 2019, 59, 165-174.	3.3	51
50	Characterization of physiological responses to 22 gene knockouts in Escherichia coli central carbon metabolism. Metabolic Engineering, 2016, 37, 102-113.	3.6	50
51	Metabolic flux analysis of Escherichia coli knockouts: lessons from the Keio collection and future outlook. Current Opinion in Biotechnology, 2014, 28, 127-133.	3.3	49
52	13C metabolic flux analysis of microbial and mammalian systems is enhanced with GC-MS measurements of glycogen and RNA labeling. Metabolic Engineering, 2016, 38, 65-72.	3.6	49
53	Predicting Dynamic Metabolic Demands in the Photosynthetic Eukaryote <i>Chlorella vulgaris</i> . Plant Physiology, 2018, 176, 450-462.	2.3	49
54	A key role for transketolase-like 1 in tumor metabolic reprogramming. Oncotarget, 2016, 7, 51875-51897.	0.8	43

MACIEK R ANTONIEWICZ

#	Article	IF	CITATIONS
55	Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8. Metabolic Engineering, 2014, 24, 173-180.	3.6	41
56	Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli. Nature Communications, 2017, 8, 14316.	5.8	41
57	Evaluation of regression models in metabolic physiology: predicting fluxes from isotopic data without knowledge of the pathway. Metabolomics, 2006, 2, 41-52.	1.4	40
58	13C metabolic flux analysis of the extremely thermophilic, fast growing, xylose-utilizing Geobacillus strain LC300. Metabolic Engineering, 2016, 33, 148-157.	3.6	40
59	Metabolism in dense microbial colonies: 13C metabolic flux analysis of E. coli grown on agar identifies two distinct cell populations with acetate cross-feeding. Metabolic Engineering, 2018, 49, 242-247.	3.6	40
60	Metabolic flux responses to deletion of 20 core enzymes reveal flexibility and limits of E. coli metabolism. Metabolic Engineering, 2019, 55, 249-257.	3.6	40
61	A guide to deciphering microbial interactions and metabolic fluxes in microbiome communities. Current Opinion in Biotechnology, 2020, 64, 230-237.	3.3	40
62	Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium. Metabolic Engineering, 2015, 32, 74-81.	3.6	38
63	Measuring the Composition and Stable-Isotope Labeling of Algal Biomass Carbohydrates via Gas Chromatography/Mass Spectrometry. Analytical Chemistry, 2016, 88, 4624-4628.	3.2	38
64	Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and 13 C-metabolic flux analysis. Metabolic Engineering, 2016, 37, 72-78.	3.6	37
65	13C metabolic flux analysis of three divergent extremely thermophilic bacteria: Geobacillus sp. LC300, Thermus thermophilus HB8, and Rhodothermus marinus DSM 4252. Metabolic Engineering, 2017, 44, 182-190.	3.6	37
66	Engineering Escherichia coli for methanol-dependent growth on glucose for metabolite production. Metabolic Engineering, 2020, 60, 45-55.	3.6	32
67	How adaptive evolution reshapes metabolism to improve fitness: recent advances and future outlook. Current Opinion in Chemical Engineering, 2018, 22, 209-215.	3.8	30
68	An unconventional uptake rate objective function approach enhances applicability of genome-scale models for mammalian cells. Npj Systems Biology and Applications, 2019, 5, 25.	1.4	30
69	Heterotrophic bacteria from an extremely phosphateâ€poor lake have conditionally reduced phosphorus demand and utilize diverse sources of phosphorus. Environmental Microbiology, 2016, 18, 656-667.	1.8	29
70	From Escherichia coli mutant 13C labeling data to a core kinetic model: A kinetic model parameterization pipeline. PLoS Computational Biology, 2019, 15, e1007319.	1.5	28
71	Co-utilization of glucose and xylose by evolved Thermus thermophilus LC113 strain elucidated by 13 C metabolic flux analysis and whole genome sequencing. Metabolic Engineering, 2016, 37, 63-71.	3.6	27
72	Tracing metabolism from lignocellulosic biomass and gaseous substrates to products with stable-isotopes. Current Opinion in Biotechnology, 2017, 43, 86-95.	3.3	26

#	Article	IF	CITATIONS
73	Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose. Metabolic Engineering, 2019, 52, 168-177.	3.6	24
74	Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation. Metabolic Engineering, 2020, 57, 247-255.	3.6	24
75	Comprehensive metabolic modeling of multiple ¹³ C-isotopomer data sets to study metabolism in perfused working hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H881-H891.	1.5	20
76	Computational Approaches in Metabolic Engineering. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-7.	3.0	19
77	Improving the Methanol Tolerance of an Escherichia coli Methylotroph via Adaptive Laboratory Evolution Enhances Synthetic Methanol Utilization. Frontiers in Microbiology, 2021, 12, 638426.	1.5	18
78	Tandem Mass Spectrometry for 13C Metabolic Flux Analysis: Methods and Algorithms Based on EMU Framework. Frontiers in Microbiology, 2019, 10, 31.	1.5	16
79	Using Multiple Tracers for 13C Metabolic Flux Analysis. Methods in Molecular Biology, 2013, 985, 353-365.	0.4	15
80	Adaptive laboratory evolution of methylotrophic Escherichia coli enables synthesis of all amino acids from methanol-derived carbon. Applied Microbiology and Biotechnology, 2021, 105, 869-876.	1.7	14
81	Triggering the stringent response enhances synthetic methanol utilization in Escherichia coli. Metabolic Engineering, 2020, 61, 1-10.	3.6	13
82	Coordinated reprogramming of metabolism and cell function in adipocytes from proliferation to differentiation. Metabolic Engineering, 2022, 69, 221-230.	3.6	11
83	Regulatory interventions improve the biosynthesis of limiting amino acids from methanol carbon to improve synthetic methylotrophy in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2021, 118, 43-57.	1.7	8
84	13C-metabolic flux analysis of Clostridium ljungdahlii illuminates its core metabolism under mixotrophic culture conditions. Metabolic Engineering, 2022, 72, 161-170.	3.6	6