Zhi-Ying He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2436131/publications.pdf Version: 2024-02-01

7HI-YING HE

#	Article	IF	CITATIONS
1	Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature, 2011, 475, 386-389.	27.8	767
2	Direct Reprogramming of Human Fibroblasts to Functional and Expandable Hepatocytes. Cell Stem Cell, 2014, 14, 370-384.	11.1	459
3	Reprogramming Fibroblasts into Bipotential Hepatic Stem Cells by Defined Factors. Cell Stem Cell, 2013, 13, 328-340.	11.1	148
4	Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. Cell Research, 2019, 29, 8-22.	12.0	108
5	Reversal of hepatocyte senescence after continuous <i>in vivo</i> cell proliferation. Hepatology, 2014, 60, 349-361.	7.3	80
6	Hepatoblast-Like Progenitor Cells Derived From Embryonic Stem Cells Can Repopulate Livers of Mice. Gastroenterology, 2010, 139, 2158-2169.e8.	1.3	59
7	Conversion of hepatoma cells to hepatocyte-like cells by defined hepatocyte nuclear factors. Cell Research, 2019, 29, 124-135.	12.0	57
8	A facile method for somatic, lifelong manipulation of multiple genes in the mouse liver. Hepatology, 2008, 47, 1714-1724.	7.3	53
9	Liver Xeno-Repopulation with Human Hepatocytes in Fahâ^'/â^'Rag2â^'/â^' Mice after Pharmacological Immunosuppression. American Journal of Pathology, 2010, 177, 1311-1319.	3.8	46
10	Reversible transition between hepatocytes and liver progenitors for in vitro hepatocyte expansion. Cell Research, 2017, 27, 709-712.	12.0	42
11	The extent of liver injury determines hepatocyte fate toward senescence or cancer. Cell Death and Disease, 2018, 9, 575.	6.3	26
12	Hepatocellular Senescence: Immunosurveillance and Future Senescence-Induced Therapy in Hepatocellular Carcinoma. Frontiers in Oncology, 2020, 10, 589908.	2.8	26
13	Insulin-like growth factor 2 is a key mitogen driving liver repopulation in mice. Cell Death and Disease, 2018, 9, 26.	6.3	25
14	Engineering Two-Dimensional Mass-Transport Channels of the MoS ₂ Nanocatalyst toward Improved Hydrogen Evolution Performance. ACS Applied Materials & Interfaces, 2018, 10, 25409-25414.	8.0	23
15	microRNA-17 functions as an oncogene by downregulating Smad3 expression in hepatocellular carcinoma. Cell Death and Disease, 2019, 10, 723.	6.3	23
16	Iron overload in hereditary tyrosinemia type 1 induces liver injury through the Sp1/Tfr2/hepcidin axis. Journal of Hepatology, 2016, 65, 137-145.	3.7	22
17	Infusion of Bone Marrow Mesenchymal Stem Cells Attenuates Experimental Severe Acute Pancreatitis in Rats. Stem Cells International, 2016, 2016, 1-10.	2.5	21
18	<scp>DUSP</scp> 16 ablation arrests the cell cycle and induces cellular senescence. FEBS Journal, 2015, 282, 4580-4594.	4.7	20

Zhi-Ying He

#	Article	IF	CITATIONS
19	Human embryonic stem cell–derived hepatoblasts are an optimal lineage stage for hepatitis C virus infection. Hepatology, 2017, 66, 717-735.	7.3	18
20	Senescence and cell death in chronic liver injury: roles and mechanisms underlying hepatocarcinogenesis. Oncotarget, 2018, 9, 8772-8784.	1.8	17
21	Patch grafting, strategies for transplantation of organoids into solid organs such as liver. Biomaterials, 2021, 277, 121067.	11.4	15
22	Stathmin 1 is a biomarker for diagnosis of microvascular invasion to predict prognosis of early hepatocellular carcinoma. Cell Death and Disease, 2022, 13, 176.	6.3	14
23	Murine embryonic stem cell-derived hepatocytes correct metabolic liver disease after serial liver repopulation. International Journal of Biochemistry and Cell Biology, 2012, 44, 648-658.	2.8	13
24	Translational Attenuation Mechanism of ErmB Induction by Erythromycin Is Dependent on Two Leader Peptides. Frontiers in Microbiology, 2021, 12, 690744.	3.5	9
25	Extensively expanded murineâ€induced hepatic stem cells maintain highâ€efficient hepatic differentiation potential for repopulation of injured livers. Liver International, 2020, 40, 2293-2304.	3.9	6
26	Mouse Models of Liver Parenchyma Injuries and Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	6
27	Suppressing Pitx2 inhibits proliferation and promotes differentiation of iHepSCs. International Journal of Biochemistry and Cell Biology, 2016, 80, 154-162.	2.8	5
28	The mRNA of TCTP functions as a sponge to maintain homeostasis of TCTP protein levels in hepatocellular carcinoma. Cell Death and Disease, 2020, 11, 974.	6.3	4
29	A Three-Dimensional Imaging Method for the Quantification and Localization of Dynamic Cell Tracking Posttransplantation. Frontiers in Cell and Developmental Biology, 2021, 9, 698795.	3.7	4
30	Direct administration of mesenchymal stem cellâ€derived mitochondria improves cardiac function after infarction via ameliorating endothelial senescence. Bioengineering and Translational Medicine, 2023, 8, .	7.1	4
31	A MicroRNA-Based Network Provides Potential Predictive Signatures and Reveals the Crucial Role of PI3K/AKT Signaling for Hepatic Lineage Maturation. Frontiers in Cell and Developmental Biology, 2021, 9, 670059.	3.7	3
32	Generation of Hepatocyte-Like Cells by Different Strategies for Liver Regeneration. Nano LIFE, 2018, 08, 1841004.	0.9	1
33	Advances of Stem Cell Therapy to Treat Heart Failure. Nano LIFE, 2019, 09, 1941002.	0.9	1
34	Expression and cytotoxicity of EGFP-labeled D-amino acid oxidase in HeLa cells. Journal of Genetics and Genomics, 2004, 31, 1175-81.	0.3	0
35	Editorial: Stem Cells in Tissue Homeostasis and Disease. Frontiers in Cell and Developmental Biology, 2022, 10, 876060.	3.7	0