
Jose Antonio Lucas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2436000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lipo-Chitooligosaccharides (LCOs) as Elicitors of the Enzymatic Activities Related to ROS Scavenging to Alleviate Oxidative Stress Generated in Tomato Plants under Stress by UV-B Radiation. Plants, 2022, 11, 1246.	1.6	4
2	Metabolic elicitors of Pseudomonas fluorescens N 21.4 elicit flavonoid metabolism in blackberry fruit. Journal of the Science of Food and Agriculture, 2021, 101, 205-214.	1.7	12
3	Tomato Bio-Protection Induced by Pseudomonas fluorescens N21.4 Involves ROS Scavenging Enzymes and PRs, without Compromising Plant Growth. Plants, 2021, 10, 331.	1.6	4
4	Biotechnological Applications of Bioeffectors Derived From the Plant Microbiome to Improve Plant's Physiological Response for a Better Adaptation to Biotic and Abiotic Stress: Fundamentals and Case Studies. , 2021, , 102-123.		0
5	Pseudomonas palmensis sp. nov., a Novel Bacterium Isolated From Nicotiana glauca Microbiome: Draft Genome Analysis and Biological Potential for Agriculture. Frontiers in Microbiology, 2021, 12, 672751.	1.5	8
6	From Beneficial Bacteria to Microbial Derived Elicitors: Biotecnological Applications to Improve Fruit Quality. Plant in Challenging Environments, 2021, , 73-90.	0.4	0
7	Search for New Allergens in Lolium perenne Pollen Growing under Different Air Pollution Conditions by Comparative Transcriptome Study. Plants, 2020, 9, 1507.	1.6	1
8	Identifying the Compounds of the Metabolic Elicitors of Pseudomonas fluorescens N 21.4 Responsible for Their Ability to Induce Plant Resistance. Plants, 2020, 9, 1020.	1.6	6
9	Bioeffectors as Biotechnological Tools to Boost Plant Innate Immunity: Signal Transduction Pathways Involved. Plants, 2020, 9, 1731.	1.6	7
10	Improving Flavonoid Metabolism in Blackberry Leaves and Plant Fitness by Using the Bioeffector <i>Pseudomonas fluorescens</i> N 21.4 and Its Metabolic Elicitors: A Biotechnological Approach for a More Sustainable Crop. Journal of Agricultural and Food Chemistry, 2020, 68, 6170-6180.	2.4	17
11	Beneficial Microorganisms: The Best Partner to Improve Plant Adaptative Capacity. Biology and Life Sciences Forum, 2020, 4, .	0.6	1
12	Extracts from cultures of Pseudomonas fluorescens induce defensive patterns of gene expression and enzyme activity while depressing visible injury and reactive oxygen species in Arabidopsis thaliana challenged with pathogenic Pseudomonas syringae. AoB PLANTS, 2019, 11, plz049.	1.2	17
13	Oxidative stress in ryegrass growing under different air pollution levels and its likely effects on pollen allergenicity. Plant Physiology and Biochemistry, 2019, 135, 331-340.	2.8	23
14	Priming fingerprint induced by <i>Bacillus amyloliquefaciens</i> QV15, a common pattern in <i>Arabidopsis thaliana</i> and in field-grown blackberry. Journal of Plant Interactions, 2018, 13, 398-408.	1.0	10
15	Transcriptomics, Targeted Metabolomics and Gene Expression of Blackberry Leaves and Fruits Indicate Flavonoid Metabolic Flux from Leaf to Red Fruit. Frontiers in Plant Science, 2017, 8, 472.	1.7	41
16	Changes of enzyme activities related to oxidative stress in rice plants inoculated with random mutants of a Pseudomonas fluorescens strain able to improve plant fitness upon biotic and abiotic conditions. Functional Plant Biology, 2017, 44, 1063.	1.1	4
17	<i>Lemna minor</i> tolerance to metalâ€working fluid residues: implications for rhizoremediation. Plant Biology, 2016, 18, 695-702.	1.8	10
18	Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater. Journal of Water and Health, 2015, 13, 1006-1019.	1.1	8

JOSE ANTONIO LUCAS

#	Article	IF	CITATIONS
19	Phytoremediation of Contaminated Waters to Improve Water Quality. , 2015, , 11-26.		2
20	Bacterial bioeffectors delay postharvest fungal growth and modify total phenolics, flavonoids and anthocyanins in blackberries. LWT - Food Science and Technology, 2015, 61, 437-443.	2.5	19
21	Photosynthetic and Ultrastructure Parameters of Maize Plants are Affected During the Phyto-Rhizoremediation Process of Degraded Metal Working Fluids. International Journal of Phytoremediation, 2015, 17, 1183-1191.	1.7	2
22	Priming of pathogenesis related-proteins and enzymes related to oxidative stress by plant growth promoting rhizobacteria on rice plants upon abiotic and biotic stress challenge. Journal of Plant Physiology, 2015, 188, 72-79.	1.6	60
23	Annual changes in bioactive contents and production in field-grown blackberry after inoculation with Pseudomonas fluorescens. Plant Physiology and Biochemistry, 2014, 74, 1-8.	2.8	30
24	Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiology and Biochemistry, 2014, 82, 44-53.	2.8	95
25	The role of isoflavone metabolism in plant protection depends on theÂrhizobacterial MAMP that triggers systemic resistance against Xanthomonas axonopodis pv. glycines in Glycine max (L.) Merr. cv. Osumi. Plant Physiology and Biochemistry, 2014, 82, 9-16.	2.8	37
26	Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek, 2013, 104, 321-330.	0.7	210
27	Spent metal working fluids produced alterations on photosynthetic parameters and cell-ultrastructure of leaves and roots of maize plants. Journal of Hazardous Materials, 2013, 260, 220-230.	6.5	13
28	Combined phytoremediation of metal-working fluids with maize plants inoculated with different microorganisms and toxicity assessment of the phytoremediated waste. Chemosphere, 2013, 90, 2654-2661.	4.2	24
29	Increased microbial activity and nitrogen mineralization coupled to changes in microbial community structure in the rhizosphere of Bt corn. Applied Soil Ecology, 2013, 68, 46-56.	2.1	13
30	Structural and functional study in the rhizosphere of <i>Oryza sativa</i> L. plants growing under biotic and abiotic stress. Journal of Applied Microbiology, 2013, 115, 218-235.	1.4	26
31	Pseudomonas fluorescens N21.4 Metabolites Enhance Secondary Metabolism Isoflavones in Soybean (Glycine max) Calli Cultures. Journal of Agricultural and Food Chemistry, 2012, 60, 11080-11087.	2.4	28
32	Characterization of the rhizosphere microbial community from different Arabidopsis thaliana genotypes using phospholipid fatty acids (PLFA) analysis. Plant and Soil, 2010, 329, 315-325.	1.8	14
33	Siderophore and chitinase producing isolates from the rhizosphere of Nicotiana glauca Graham enhance growth and induce systemic resistance in Solanum lycopersicum L Plant and Soil, 2010, 334, 189-197.	1.8	66
34	Biotic Elicitation of Isoflavone Metabolism with Plant Growth Promoting Rhizobacteria in Early Stages of Development in <i>Glycine max</i> var. Osumi. Journal of Agricultural and Food Chemistry, 2010, 58, 1484-1492.	2.4	39
35	Functional diversity of rhizosphere microorganisms from different genotypes of <i>Arabidopsis thaliana</i> . Community Ecology, 2009, 10, 111-119.	0.5	11
36	Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in Southern Spain. Field Crops Research, 2009, 114, 404-410.	2.3	106

JOSE ANTONIO LUCAS

#	Article	IF	CITATIONS
37	Effect of fire and retardant on soil microbial activity and functional diversity in a Mediterranean pasture. Geoderma, 2009, 153, 186-193.	2.3	29
38	Elicitation of systemic resistance and growth promotion of Arabidopsis thaliana by PGPRs from Nicotiana glauca: a study of the putative induction pathway. Plant and Soil, 2007, 290, 43-50.	1.8	42
39	Screening for PGPR to improve growth of Cistus ladanifer seedlings for reforestation of degraded mediterranean ecosystems. Plant and Soil, 2006, 287, 59-68.	1.8	23
40	Colonisation of Pinus halepensis roots by Pseudomonas fluorescens and interaction with the ectomycorrhizal fungus Suillus granulatus. FEMS Microbiology Ecology, 2005, 51, 303-311.	1.3	36
41	Screening for Putative PGPR to Improve Establishment of the Symbiosis Lactarius deliciosus-Pinus sp Microbial Ecology, 2005, 50, 82-89.	1.4	49
42	Seasonal diversity changes in alder (Alnus glutinosa) culturable rhizobacterial communities throughout a phenological cycle. Applied Soil Ecology, 2005, 29, 215-224.	2.1	14
43	Growth of forest plants (pine and holm-oak) inoculated with rhizobacteria: relationship with microbial community structure and biological activity of its rhizosphere. Environmental and Experimental Botany, 2004, 52, 239-251.	2.0	55
44	Effects of inoculation with plant growth promoting rhizobacteria (PGPRs) andSinorhizobium fredii on biological nitrogen fixation, nodulation and growth ofGlycine max cv. Osumi. Plant and Soil, 2004, 267, 143-153.	1.8	62
45	Bacillus spp. and Pisolithus tinctorius effects on Quercus ilex ssp. ballota: a study on tree growth, rhizosphere community structure and mycorrhizal infection. Forest Ecology and Management, 2004, 194, 293-303.	1.4	21
46	Effect of inoculation ofBacillus licheniformison tomato and pepper. Agronomy for Sustainable Development, 2004, 24, 169-176.	0.8	68
47	Title is missing!. New Forests, 2003, 25, 149-159.	0.7	17
48	Colonization of pepper roots by a plant growth promoting Pseudomonas fluorescens strain. Biology and Fertility of Soils, 2003, 37, 381-385.	2.3	15
49	Alterations in the rhizobacterial community associated with European alder growth when inoculated with PGPR strain Bacillus licheniformis. Environmental and Experimental Botany, 2003, 49, 61-68.	2.0	44
50	Effects of Culture Filtrates of Rhizobacteria Isolated from Wild Lupine on Germination, Growth, and Biological Nitrogen Fixation of Lupine Seedlings. Journal of Plant Nutrition, 2003, 26, 1101-1115.	0.9	50
51	Uptake and Distribution of Zinc, Cadmium, Lead and Copper in <i>Brassica napus var. oleĀfera</i> and <i>Helianthus annus</i> Grown in Contaminated Soils. International Journal of Phytoremediation, 2003, 5, 153-167.	1.7	32
52	Effects of two plant growth-promoting Rhizobacteria on the germination and growth of pepper seedlings (Capsicum Annum) CV. Roxy: Wirkung von zwei wachstumsfordernden Rhizobakterien auf die keimung und das wachstum von pfeffersaaten (Capsicum Annum) CV. Roxy. Archives of Agronomy and Soil Science, 2003, 49, 593-603.	1.3	8
53	Systemic induction of the biosynthesis of terpenic compounds inDigitalis lanata. Journal of Plant Physiology, 2003, 160, 105-113.	1.6	31
54	Effects of three plant growth-promoting rhizobacteria on the growth of seedlings of tomato and pepper in two different sterilized and nonsterilized peats. Archives of Agronomy and Soil Science, 2003, 49, 119-127.	1.3	15

JOSE ANTONIO LUCAS

#	Article	IF	CITATIONS
55	Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology, 2002, 20, 75-84.	2.1	97
56	Genetic variability of rhizobacteria from wild populations of fourLupinus species based on PCR-RAPDs§. Journal of Plant Nutrition and Soil Science, 2001, 164, 1-7.	1.1	47
57	Effects of inoculation with PGPR Bacillus and Pisolithus tinctorius on Pinus pinea L. growth, bacterial rhizosphere colonization, and mycorrhizal infection. Microbial Ecology, 2001, 41, 140-148.	1.4	74
58	Low molecular weight organic acids and fatty acids in root exudates of twoLupinuscultivars at flowering and fruiting stages. Phytochemical Analysis, 2001, 12, 305-311.	1.2	77
59	Shifts in Microbial Communities, Microbial Biomass and Organic Matter Mineralization for Three Mediterranean Soils Contaminated By Metals. Chemistry and Ecology, 2000, 17, 125-152.	0.6	1
60	The influence of native rhizobacteria on european alder (Alnus glutinosa (L.) Gaertn.) growth. Plant and Soil, 1996, 182, 59-66.	1.8	84
61	The infuence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth. Plant and Soil, 1996, 182, 67-74.	1.8	76
62	The Flavonol-Anthocyanin Pathway in Blackberry and Arabidopsis: State of the Art. , 0, , .		7