
Andrew Robertson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2435527/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What does the Bullet Cluster tell us about self-interacting dark matter?. Monthly Notices of the Royal Astronomical Society, 2017, 465, 569-587.	4.4	155
2	The behaviour of dark matter associated with four bright cluster galaxies in the 10Âkpc core of Abell 3827. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3393-3406.	4.4	147
3	The extraordinary amount of substructure in the <i>Hubble Frontier Fields</i> cluster AbellÂ2744. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3876-3893.	4.4	99
4	Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryons. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3646-3662.	4.4	72
5	The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 476, L20-L24.	3.3	62
6	Cosmic particle colliders: simulations of self-interacting dark matter with anisotropic scattering. Monthly Notices of the Royal Astronomical Society, 2017, 467, 4719-4730.	4.4	57
7	Observable tests of self-interacting dark matter in galaxy clusters: BCG wobbles in a constant density core. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1572-1579.	4.4	57
8	The BUFFALO HST Survey. Astrophysical Journal, Supplement Series, 2020, 247, 64.	7.7	57
9	Baryonic clues to the puzzling diversity of dwarf galaxy rotation curves. Monthly Notices of the Royal Astronomical Society, 2020, 495, 58-77.	4.4	50
10	Velocity-dependent self-interacting dark matter from groups and clusters of galaxies. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 024-024.	5.4	50
11	Subhalo destruction in the Apostle and Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5780-5793.	4.4	46
12	What does strong gravitational lensing? The mass and redshift distribution of high-magnification lenses. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3727-3739.	4.4	42
13	Medical Isotope Production at TRIUMF – from Imaging to Treatment. Physics Procedia, 2017, 90, 200-208.	1.2	38
14	PyAutoLens: Open-Source Strong Gravitational Lensing. Journal of Open Source Software, 2021, 6, 2825.	4.6	34
15	The surprising accuracy of isothermal Jeans modelling of self-interacting dark matter density profiles. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4610-4634.	4.4	34
16	The offsets between galaxies and their dark matter in \hat{I} cold dark matter. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 453, L58-L62.	3.3	28
17	Growing a â€~cosmic beast': observations and simulations of MACS J0717.5+3745. Monthly Notices of t Royal Astronomical Society, 2018, 481, 2901-2917.	he 4.4	25
18	To β or not to β: can higher order Jeans analysis break the mass–anisotropy degeneracy in simulated dwarfs?. Monthly Notices of the Royal Astronomical Society, 2020, 498, 144-163.	4.4	25

#	Article	IF	CITATIONS
19	Dark matter dynamics in Abell 3827: new data consistent with standard cold dark matter. Monthly Notices of the Royal Astronomical Society, 2018, 477, 669-677.	4.4	22
20	On building a cluster watchlist for identifying strongly lensed supernovae, gravitational waves and kilonovae. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1666-1671.	4.4	22
21	Halo concentration strengthens dark matter constraints in galaxy–galaxy strong lensing analyses. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2464-2479.	4.4	22
22	Strong-lensing of Gravitational Waves by Galaxy Clusters. Proceedings of the International Astronomical Union, 2017, 13, 98-102.	0.0	19
23	Deep and rapid observations of strong-lensing galaxy clusters within the sky localization of GW170814. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5180-5191.	4.4	19
24	A forward-modelling method to infer the dark matter particle mass from strong gravitational lenses. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3046-3062.	4.4	19
25	From dwarf galaxies to galaxy clusters: Self-Interacting Dark Matter over 7 orders of magnitude in halo mass. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 043-043.	5.4	18
26	The impact of cored density profiles on the observable quantities of dwarf spheroidal galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 481, L89-L93.	3.3	17
27	A test for skewed distributions of dark matter, and a possible detection in galaxy cluster Abell 3827. Monthly Notices of the Royal Astronomical Society, 2017, 468, 5004-5013.	4.4	13
28	Exploring extensions to the standard cosmological model and the impact of baryons on small scales. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3809-3829.	4.4	13
29	The distribution of dark matter and gas spanning 6 Mpc around the post-merger galaxy cluster MS 0451â^03. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4032-4050.	4.4	13
30	<i>N</i> -body simulations of dark matter with frequent self-interactions. Monthly Notices of the Royal Astronomical Society, 2021, 505, 851-868.	4.4	13
31	Looking for dark matter trails in colliding galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2017, 464, 3991-3997.	4.4	12
32	A high-resolution cosmological simulation of a strong gravitational lens. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4657-4668.	4.4	12
33	The galaxy–galaxy strong lensing cross-sections of simulated ♭CDM galaxy clusters. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 504, L7-L11.	3.3	11
34	Reconciling galaxy cluster shapes, measured by theorists versus observers. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2627-2644.	4.4	11
35	Galaxy–galaxy strong lens perturbations: line-of-sight haloes versus lens subhaloes. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5862-5873.	4.4	10
36	Local group star formation in warm and self-interacting dark matter cosmologies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 702-717.	4.4	9

ANDREW ROBERTSON

#	Article	IF	CITATIONS
37	Unequal-mass mergers of dark matter haloes with rare and frequent self-interactions. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4080-4099.	4.4	9
38	The impact of self-interacting dark matter on the intrinsic alignments of galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 441-451.	4.4	5
39	The effects of self-interacting dark matter on the stripping of galaxies that fall into clusters. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5927-5935.	4.4	5
40	Self-interacting dark matter scattering rates through cosmic time. Monthly Notices of the Royal Astronomical Society, 2015, 453, 2268-2277.	4.4	4
41	Understanding the large inferred Einstein radii of observed low-mass galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4706-4712.	4.4	2
42	Mapping dark matter and finding filaments: calibration of lensing analysis techniques on simulated data. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3973-3990.	4.4	2