Gvido Bratina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2435413/publications.pdf

Version: 2024-02-01

257450 243625 2,327 106 24 44 citations h-index g-index papers 106 106 106 3172 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Conjugated Polymer Mesocrystals with Structural and Optoelectronic Coherence and Anisotropy in Three Dimensions. Advanced Materials, 2022, 34, e2103002.	21.0	11
2	A pyrrolopyridazinedione-based copolymer for fullerene-free organic solar cells. New Journal of Chemistry, 2021, 45, 1001-1009.	2.8	3
3	Multiresponsive Nonvolatile Memories Based on Optically Switchable Ferroelectric Organic Fieldâ€Effect Transistors. Advanced Materials, 2021, 33, e2007965.	21.0	52
4	Solution-Processed Graphene–Nanographene van der Waals Heterostructures for Photodetectors with Efficient and Ultralong Charge Separation. Journal of the American Chemical Society, 2021, 143, 17109-17116.	13.7	19
5	The role of charge transfer at reduced graphene oxide/organic semiconductor interface on the charge transport properties. Organic Electronics, 2020, 77, 105499.	2.6	3
6	Molecular alignment on graphene surface determines transport properties of graphene/organic semiconductor transistors. Organic Electronics, 2020, 87, 105933.	2.6	3
7	Enhancement of Charge Transport in Polythiophene Semiconducting Polymer by Blending with Graphene Nanoparticles. ChemPlusChem, 2019, 84, 1366-1374.	2.8	3
8	Elucidation of Donor:Acceptor Phase Separation in Nonfullerene Organic Solar Cells and Its Implications on Device Performance and Charge Carrier Mobility. ACS Applied Energy Materials, 2019, 2, 7535-7545.	5.1	11
9	Novel Chitosan–Mg(OH) ₂ -Based Nanocomposite Membranes for Direct Alkaline Ethanol Fuel Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 19356-19368.	6.7	26
10	Enhanced photoconductivity of semiconductor polymers using graphene nanoflakes. Materials Today: Proceedings, 2019, 19, 2591-2595.	1.8	1
11	Characterisation of charge carrier transport in thin organic semiconductor layers by time-of-flight photocurrent measurements. Organic Electronics, 2019, 64, 117-130.	2.6	13
12	The effect of polymer molecular weight on the performance of PTB7-Th:O-IDTBR non-fullerene organic solar cells. Journal of Materials Chemistry A, 2018, 6, 9506-9516.	10.3	76
13	Negative field-dependent charge mobility in crystalline organic semiconductors with delocalized transport. Chemical Papers, 2018, 72, 1685-1695.	2.2	5
14	Selfâ€Suspended Nanomesh Scaffold for Ultrafast Flexible Photodetectors Based on Organic Semiconducting Crystals. Advanced Materials, 2018, 30, e1801181.	21.0	32
15	Organic Optoelectronics: Self-Suspended Nanomesh Scaffold for Ultrafast Flexible Photodetectors Based on Organic Semiconducting Crystals (Adv. Mater. 28/2018). Advanced Materials, 2018, 30, 1870204.	21.0	O
16	Charge carrier transport in polycrystalline CH3NH3PbI3 perovskite thin films in a lateral direction characterized by time-of-flight photoconductivity. Materials Chemistry and Physics, 2018, 220, 182-189.	4.0	11
17	Fastâ€Response Photonic Device Based on Organicâ€Crystal Heterojunctions Assembled into a Verticalâ€Yetâ€Open Asymmetric Architecture. Advanced Materials, 2017, 29, 1605760.	21.0	21
18	Interface-controlled growth of organic semiconductors on graphene. Surface Science, 2017, 664, 16-20.	1.9	7

#	Article	IF	CITATIONS
19	The role of local potential minima on charge transport in thin organic semiconductor layers. Organic Electronics, 2017, 42, 221-227.	2.6	5
20	Evidence of enhanced photocurrent response in corannulene films. RSC Advances, 2017, 7, 45601-45606.	3.6	5
21	Role of transport band edge variation on delocalized charge transport in high-mobility crystalline organic semiconductors. Physical Review B, 2017, 96, .	3.2	8
22	A nanomesh scaffold for supramolecular nanowire optoelectronic devices. Nature Nanotechnology, 2016, 11, 900-906.	31.5	72
23	Flexible non-volatile optical memory thin-film transistor device with over 256 distinct levels based on an organic bicomponent blend. Nature Nanotechnology, 2016, 11, 769-775.	31.5	300
24	Factors determining large observed increases in power conversion efficiency of P3HT:PCBM solar cells embedded with Mo6S9â^\dangle xlx nanowires. Synthetic Metals, 2016, 212, 105-112.	3.9	16
25	Fabrication of poly(3-hexylthiophene) nanowires for high-mobility transistors. Organic Electronics, 2016, 30, 92-98.	2.6	16
26	Influence of a gold substrate on the optical properties of graphene. Journal of Applied Physics, 2015, 117, .	2.5	12
27	Graphene flakes at the SiO2/organic-semiconductor interface for high-mobility field-effect transistors. Organic Electronics, 2015, 27, 221-226.	2.6	10
28	Pentacene on graphene: Differences between single layer and bilayer. Carbon, 2014, 69, 162-168.	10.3	23
29	Characterization of Pure and Modified TiO \$\$_{2}\$\$ 2 Layer on Glass and Aluminum Support by Beam Deflection Spectrometry. International Journal of Thermophysics, 2014, 35, 1990-2000.	2.1	14
30	Graphene-Induced Enhancement of n-Type Mobility in Perylenediimide Thin Films. Journal of Physical Chemistry C, 2014, 118, 24819-24826.	3.1	16
31	Highly active photocatalytic coatings prepared by a low-temperature method. Environmental Science and Pollution Research, 2014, 21, 11238-11249.	5.3	58
32	Effect of Water Layer at the SiO ₂ /Graphene Interface on Pentacene Morphology. Langmuir, 2014, 30, 11681-11688.	3.5	18
33	Mo6S9â^'xlx nanowires as additives for enhanced organic solar cell performance. Solar Energy Materials and Solar Cells, 2014, 127, 63-66.	6.2	19
34	Grafold-driven nucleation of pentacene on graphene. Surface Science, 2013, 609, L5-L8.	1.9	12
35	Photo-induced intramolecular charge transfer in an ambipolar field-effect transistor based on a π-conjugated donor–acceptor dyad. Journal of Materials Chemistry C, 2013, 1, 3985.	5.5	45
36	Modulation of charge transport properties of reduced graphene oxide by submonolayer physisorption of an organic dye. Organic Electronics, 2013, 14, 1787-1792.	2.6	17

3

#	Article	IF	Citations
37	Influence of Solid-State Microstructure on the Electronic Performance of 5,11-Bis(triethylsilylethynyl) Anthradithiophene. Chemistry of Materials, 2013, 25, 1823-1828.	6.7	21
38	Influence of transfer residue on the optical properties of chemical vapor deposited graphene investigated through spectroscopic ellipsometry. Journal of Applied Physics, 2013, 114, .	2.5	37
39	Time-of-flight mobility of charge carriers in position-dependent electric field between coplanar electrodes. Applied Physics Letters, 2012, 101, 093304.	3.3	25
40	Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor. Nature Chemistry, 2012, 4, 675-679.	13.6	217
41	Electronic and structural characterisation of a tetrathiafulvalene compound as a potential candidate for ambipolar transport properties. CrystEngComm, 2011, 13, 6597.	2.6	19
42	Electron-Withdrawing Substituted Tetrathiafulvalenes as Ambipolar Semiconductors. Chemistry of Materials, 2011, 23, 851-861.	6.7	32
43	Ionization Energy and Energy Gap Structure of MoSI Molecular Wires: Kelvin Probe, Ultraviolet Photoelectron Spectroscopy, and Cyclic Voltammetry Measurements. Langmuir, 2011, 27, 4296-4299.	3.5	11
44	In diffusion and electronic energy structure in polymer layers on In tin oxide. Thin Solid Films, 2011, 519, 4216-4219.	1.8	20
45	Single-step solution processing of small-molecule organic semiconductor field-effect transistors at high yield. Applied Physics Letters, 2011, 99, .	3.3	16
46	X-ray absorption of cadmium in theL-edge region. Physical Review A, 2011, 84, .	2.5	4
47	The role of Ti adhesion layer in electric charge transport in pentacene organic thin film transistors. European Physical Journal B, 2010, 73, 341-346.	1.5	4
48	Interface resistivity and lifetime of thin film transistors exposed to ambient air. Applied Physics Letters, 2009, 94, 123301.	3.3	8
49	Growth of ultrathin pentacene films on polymeric substrates. Physical Review B, 2009, 80, .	3.2	40
50	Morphology of the Metal-organic Semiconductor Contacts: the Role of Substrate Surface Treatment. Springer Proceedings in Physics, 2009, , 205-210.	0.2	3
51	Contact resistance in organic thin film transistors. Synthetic Metals, 2009, 159, 1210-1214.	3.9	16
52	Initial stages of growth of organic semiconductors on vicinal (0001) sapphire surfaces. Surface Science, 2008, 602, 1368-1375.	1.9	11
53	Displacement current in bottom-contact organic thin-film transistor. Journal Physics D: Applied Physics, 2008, 41, 135109.	2.8	12
54	Influence of substrate morphology on growth mode of thin organic films: An atomic force microscopy study. Journal of Vacuum Science & Technology B, 2007, 25, 1152.	1.3	7

#	Article	IF	Citations
55	Ripening of Rubrene Islands. Journal of Physical Chemistry C, 2007, 111, 18558-18562.	3.1	9
56	Behavior of the (0001) surface of sapphire upon high-temperature annealing. Surface Science, 2007, 601, 44-49.	1.9	37
57	Fabrication of rubrene nanowires on vicinal (0001) sapphire surfaces. Surface Science, 2007, 601, L25-L28.	1.9	7
58	Thermal diffusion of indium in perylenetetracarboxylic dianhydride. European Physical Journal Special Topics, 2006, 132, 127-132.	0.2	0
59	The role of space-charge-induced electric field on transient photocurrent response in organic semiconductors. Physica Status Solidi (B): Basic Research, 2006, 243, 473-482.	1.5	4
60	Morphology and electronic structure of thin 3,4,9,10-perylenetetracarboxylic dianhydride layers on Si(001). Thin Solid Films, 2006, 515, 1424-1428.	1.8	6
61	EXAFS Study of SnO2 Xerogel Doped with Sb and PTCDA. Physica Scripta, 2005, , 329.	2.5	0
62	Electrical conductivity in metal/3,4,9,10-perylenetetracarboxylic dianhydride/metal structures. Journal of Applied Physics, 2003, 93, 6090-6094.	2.5	6
63	Electronic transport in perylenetetracarboxylic dianhydride: The role of In diffusion. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 797-801.	2.1	2
64	Evidence of bipolar charge transport in PTCDA. Solid State Communications, 2002, 123, 155-160.	1.9	0
65	Schottky barrier tunability in Al/ZnSe interfaces. Journal of Crystal Growth, 1998, 184-185, 193-198.	1.5	0
66	Al/ZnSe(100) Schottky-barrier height versus initial ZnSe surface reconstruction. Physical Review B, 1998, 57, R9431-R9434.	3.2	10
67	Atomic scale roughness of GaAs(001)2×4 surfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 623.	1.6	19
68	Improved contact resistance to n-type wide gap Il–VI semiconductors. Journal of Crystal Growth, 1996, 159, 718-722.	1.5	2
69	Structural properties of heterostructures with engineered band offsets. Journal of Crystal Growth, 1996, 159, 703-708.	1.5	13
70	Chemical bonding and electronic properties of Seâ€rich ZnSe–GaAs(001) interfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 3135-3143.	2.1	10
71	Low resistance graded contacts to nâ€type ZnSe. Applied Physics Letters, 1996, 68, 370-372.	3.3	8
72	Interfacial chemical bonds, reactions, and band alignment in ZnSe/GaAs(001) heterojunctions. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 2967.	1.6	9

#	Article	IF	CITATIONS
73	Defect structure at a interface. Thin Solid Films, 1995, 271, 117-121.	1.8	2
74	Influence of growth parameters on the properties of ZnSe-GaAs(001) heterostructures. Journal of Crystal Growth, 1995, 150, 765-769.	1.5	6
75	Arsenic cap layer desorption and the formation of $GaAs(001)c(4\tilde{A}-4)$ surfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1995, 13, 2041.	1.6	20
76	Cross-sectional lateral-force microscopy of semiconductor heterostructures and multiple quantum wells. Physical Review B, 1995, 52, R8625-R8628.	3.2	9
77	Lack of band-offset transitivity for semiconductor heterojunctions with polar orientation: ZnSe-Ge(001), Ge-GaAs(001), and ZnSe-GaAs(001). Physical Review B, 1994, 50, 11723-11729.	3.2	31
78	Chemical vapor deposition of Al from dimethylethylamine alane on GaAs(100)c(4 \tilde{A} -4) surfaces. Journal of Applied Physics, 1994, 76, 3471-3478.	2.5	11
79	Modification of Al/GaAs(001) Schottky barriers by means of heterovalent interface layers. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 2653.	1.6	19
80	Local interface composition and band discontinuities in heterovalent heterostructures. Physical Review Letters, 1994, 72, 294-297.	7.8	130
81	<title>Interfacial engineering in blue laser structures</title> ., 1994, 2346, 100.		2
82	$\label{lem:continuous} $$ \begin{array}{l} < title>Nanosize stress concentrators at facets in Zn1-xCdxSe/ZnSe multiple quantum well laser structures ., 1994, , . \\ \end{array} $$$		2
83	Charged versus neutral interfaces in Ill–V/Ge quantum wells. Journal of Crystal Growth, 1993, 127, 93-97.	1.5	6
84	Si-GaAs(001) superlattice structure. Journal of Crystal Growth, 1993, 127, 121-125.	1.5	12
85	ZnSe-GaAs heterojunction parameters. Journal of Crystal Growth, 1993, 127, 387-391.	1.5	29
86	Microscopic control of ZnSe-GaAs heterojunction band offsets. Physica B: Condensed Matter, 1993, 185, 557-565.	2.7	30
87	Band offsets and strain in CdTe-GaAs heterostructures. Physical Review B, 1993, 48, 8899-8910.	3.2	26
88	Modification of heterojunction band offsets at III–V/IV/III–V interfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1993, 11, 1628.	1.6	13
89	Modification of heterojunction band offsets at III-V/IV/III-V interfaces. , $1993, , .$		0
90	The coherency loss microstructure at a CdTe/GaAs(001) interface. Philosophical Magazine Letters, 1993, 67, 279-285.	1.2	19

#	Article	IF	Citations
91	Tem Investigations of CdTe/GaAs(001) Interfaces. Materials Research Society Symposia Proceedings, 1993, 319, 129.	0.1	O
92	Local Interface Composition and Band Offset Tuning in ZnSe-GaAs(001) Heterostructures. Materials Research Society Symposia Proceedings, 1993, 326, 3.	0.1	2
93	Microscopic control of ZnSe–GaAs heterojunction band offsets. , 1993, , 557-565.		0
94	Microscopic capacitors and neutral interfaces in III-V/IV/III-V semiconductor heterostructures. Physical Review Letters, 1992, 69, 1283-1286.	7.8	52
95	AlAs-GaAs heterojunction engineering by means of group-IV elemental interface layers. Physical Review B, 1992, 45, 4528-4531.	3.2	45
96	Structure and local dipole of Si interface layers in AlAs-GaAs heterostructures. Physical Review B, 1992, 46, 6834-6845.	3.2	44
97	Phonons in Si/GaAs superlattices. Physical Review B, 1992, 46, 7296-7299.	3.2	13
98	Siâ€GaAs(001) superlattices. Applied Physics Letters, 1992, 61, 1570-1572.	3.3	10
99	Vibrational properties of Si/GaAs superlattices. Superlattices and Microstructures, 1992, 12, 429-432.	3.1	2
100	Engineering ZnSe-GaAs band offsets. Journal of Crystal Growth, 1992, 117, 573-577.	1.5	13
101	Tuning AlAs-GaAs heterostructure properties by means of MBE-grown Si interface layers. Surface Science, 1991, 251-252, 82-86.	1.9	13
102	Tuning AlAs-GaAs band discontinuities and the role of Si-induced local interface dipoles. Physical Review B, 1991, 43, 2450-2453.	3.2	123
103	AlAs-GaAs Beterojunction Engineering by Means of Group IV Interface Layers. Materials Research Society Symposia Proceedings, 1991, 240, 603.	0.1	0
104	Epitaxial growth and interface parameters of Si layers on GaAs(001) and AlAs(001) substrates. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1991, 9, 2225.	1.6	30
105	Microstructural and Surface Effects on Fatigue of Ti-6Al-4V Alloy. , 1990, , 344-353.		1
106	Some properties of melt-produced YBaCuO wire. Superconductor Science and Technology, 1988, 1, 141-144.	3.5	4