Renbi Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2435289/publications.pdf

Version: 2024-02-01

101	9,278	52	95
papers	citations	h-index	g-index
103	103	103	9948
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Simultaneous alkaline hydrolysis and non-solvent induced phase separation method for polyacrylonitrile (PAN) membrane with highly hydrophilic and enhanced anti-fouling performance. Journal of Membrane Science, 2021, 635, 119499.	4.1	36
2	Highly Effective Anti-Organic Fouling Performance of a Modified PVDF Membrane Using a Triple-Component Copolymer of P(Stx-co-MAAy)-g-fPEGz as the Additive. Membranes, 2021, 11, 951.	1.4	5
3	In-situ growth of all-solid Z-scheme heterojunction photocatalyst of Bi7O9I3/g-C3N4 and high efficient degradation of antibiotic under visible light. Applied Catalysis B: Environmental, 2020, 261, 118212.	10.8	192
4	Removal of mercury by magnetic nanomaterial with bifunctional groups and core-shell structure: Synthesis, characterization and optimization of adsorption parameters. Applied Surface Science, 2020, 500, 143970.	3.1	47
5	Fabrication of antifouling membranes by blending poly(vinylidene fluoride) with cationic polyionic liquid. Journal of Applied Polymer Science, 2020, 137, 48878.	1.3	12
6	A Facile and Fast Approach To Coat Various Substrates with Poly(styrene-co-maleic anhydride) and Polyethyleneimine for Oil/Water Separation. Industrial & Engineering Chemistry Research, 2019, 58, 19475-19485.	1.8	25
7	Preparation of antifouling cellulose acetate membranes with good hydrophilic and oleophobic surface properties. Materials Letters, 2019, 252, 1-4.	1.3	30
8	Fabrication of superhydrophilic and underwater superoleophobic membranes via an in situ crosslinking blend strategy for highly efficient oil/water emulsion separation. Journal of Membrane Science, 2019, 569, 60-70.	4.1	136
9	Enhanced photocatalytic degradation for organic pollutants by a novel m-Bi2O4/Bi2O2CO3 photocatalyst under visible light. Research on Chemical Intermediates, 2018, 44, 3061-3079.	1.3	25
10	Poly(imidazoled glycidyl methacrylate-co-diethyleneglycol methyl ether methacrylate) – A new copolymer with tunable LCST and UCST behavior in water. Polymer, 2018, 157, 79-86.	1.8	8
11	Synthesis of novel p-n heterojunction m-Bi2O4/BiOCl nanocomposite with excellent photocatalytic activity through ion-etching method. Chinese Journal of Catalysis, 2018, 39, 1792-1803.	6.9	53
12	Synthesis of flower-like Bi2O4/ZnO heterojunction and mechanism of enhanced photodegradation for organic contaminants under visible light. Research on Chemical Intermediates, 2018, 44, 6569-6590.	1.3	15
13	Thiol functionalization of short channel SBA-15 through a safe, mild and facile method and application for the removal of mercury (II). Journal of Environmental Chemical Engineering, 2018, 6, 5420-5433.	3.3	47
14	Flower-like Bi2WO6/ZnO composite with excellent photocatalytic capability under visible light irradiation. Chinese Journal of Catalysis, 2018, 39, 810-820.	6.9	55
15	Adsorption of mercury(<scp>ii</scp>) with an Fe ₃ O ₄ magnetic polypyrrole–graphene oxide nanocomposite. RSC Advances, 2017, 7, 18466-18479.	1.7	136
16	Highly promoted removal of Hg(<scp>ii</scp>) with magnetic CoFe ₂ O ₄ @SiO ₂ core–shell nanoparticles modified by thiol groups. RSC Advances, 2017, 7, 39204-39215.	1.7	48
17	Removal of mercury (II) from aqueous solution with three commercial raw activated carbons. Research on Chemical Intermediates, 2017, 43, 2273-2297.	1.3	33
18	Separation of Biologically Active Compounds by Membrane Operations. Current Pharmaceutical Design, 2017, 23, 218-230.	0.9	8

#	Article	IF	CITATIONS
19	Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV–Vis irradiation. Water Research, 2016, 101, 103-113.	5.3	66
20	Affinity Membranes for Purification of Enzymes. , 2016, , 20-22.		0
21	Removal of mercury(<scp>ii</scp>) and methylene blue from a wastewater environment with magnetic graphene oxide: adsorption kinetics, isotherms and mechanism. RSC Advances, 2016, 6, 82523-82536.	1.7	85
22	Enhanced performance in phenol removal from aqueous solutions by a buoyant composite photocatalyst prepared with a two-layered configuration on polypropylene substrate. Journal of Environmental Chemical Engineering, 2016, 4, 230-239.	3.3	18
23	Development and characterization of quaternized poly (vinyl alcohol) composite nanofiltration membranes. Journal of Materials Science, 2016, 51, 1855-1863.	1.7	6
24	Poly (vinyl alcohol)/carboxymethyl cellulose sodium blend composite nanofiltration membranes developed via interfacial polymerization. Journal of Membrane Science, 2015, 493, 654-663.	4.1	34
25	Effective and low fouling oil/water separation by a novel hollow fiber membrane with both hydrophilic and oleophobic surface properties. Journal of Membrane Science, 2014, 466, 36-44.	4.1	132
26	Recent advances in chitosan and its derivatives as adsorbents for removal of pollutants from water and wastewater. Current Opinion in Chemical Engineering, 2014, 4, 62-70.	3.8	63
27	Removal of phenol in aqueous solutions by novel buoyant Composite photocatalysts and the kinetics. Separation and Purification Technology, 2013, 115, 180-189.	3.9	14
28	A novel membrane showing both hydrophilic and oleophobic surface properties and its non-fouling performances for potential water treatment applications. Journal of Membrane Science, 2013, 436, 47-56.	4.1	156
29	Immobilization of silver in polypropylene membrane for anti-biofouling performance. Biofouling, 2011, 27, 773-786.	0.8	36
30	Effect of Thickness of Photocatalyst Film Immobilized on a Buoyant Substrate on the Degradation of Methyl Orange Dye in Aqueous Solutions under Different Light Irradiations. Industrial & Degradation; Engineering Chemistry Research, 2011, 50, 11922-11929.	1.8	21
31	Novel multifunctional membrane technology for visual detection and enhanced adsorptive removal of lead ions in water and wastewater. Water Science and Technology: Water Supply, 2011, 11, 113-120.	1.0	3
32	Development of a multifunctional membrane for chromatic warning and enhanced adsorptive removal of heavy metal ions: Application to cadmium. Journal of Membrane Science, 2011, 379, 69-79.	4.1	66
33	Modification of membrane surface for anti-biofouling performance: Effect of anti-adhesion and anti-bacteria approaches. Journal of Membrane Science, 2010, 346, 121-130.	4.1	265
34	Highly hydrophilic and low-protein-fouling polypropylene membrane prepared by surface modification with sulfobetaine-based zwitterionic polymer through a combined surface polymerization method. Journal of Membrane Science, 2010, 362, 326-333.	4.1	170
35	Membrane surfaces immobilized with ionic or reduced silver and their anti-biofouling performances. Journal of Membrane Science, 2010, 363, 278-286.	4.1	144
36	A novel method for obtaining a highâ€concentration chitosan solution and preparing a highâ€strength chitosan hollowâ€fiber membrane with an excellent adsorption capacity. Journal of Applied Polymer Science, 2010, 115, 1913-1921.	1.3	8

#	Article	IF	CITATIONS
37	Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV–Vis and Vis lights. Separation and Purification Technology, 2010, 73, 142-150.	3.9	79
38	Functionalization of adsorbent with different aliphatic polyamines for heavy metal ion removal: Characteristics and performance. Journal of Colloid and Interface Science, 2010, 345, 454-460.	5.0	50
39	Extended study of DETA-functionalized PGMA adsorbent in the selective adsorption behaviors and mechanisms for heavy metal ions of Cu, Co, Ni, Zn, and Cd. Journal of Colloid and Interface Science, 2010, 350, 282-289.	5.0	25
40	Achieving Highly Effective Non-biofouling Performance for Polypropylene Membranes Modified by UV-Induced Surface Graft Polymerization of Two Oppositely Charged Monomers. Journal of Physical Chemistry B, 2010, 114, 2422-2429.	1.2	99
41	A Novel Electrolyte-Responsive Membrane with Tunable Permeation Selectivity for Protein Purification. ACS Applied Materials & Samp; Interfaces, 2010, 2, 203-211.	4.0	98
42	Biodegradation of acetonitrile by adapted biofilm in a membrane-aerated biofilm reactor. Biodegradation, 2009, 20, 569-580.	1.5	15
43	Surface functionalization of Cu–Ni alloys via grafting of a bactericidal polymer for inhibiting biocorrosion byDesulfovibrio desulfuricansin anaerobic seawater. Biofouling, 2009, 25, 109-125.	0.8	18
44	Buoyant Photocatalyst with Greatly Enhanced Visible-Light Activity Prepared through a Low Temperature Hydrothermal Method. Industrial & Engineering Chemistry Research, 2009, 48, 2891-2898.	1.8	92
45	Membrane-Aerated Biofilm Reactor for the Treatment of Acetonitrile Wastewater. Environmental Science &	4.6	71
46	Coating of TiO ₂ Thin Films on the Surface of SiO ₂ Microspheres: Toward Industrial Photocatalysis. Industrial & Engineering Chemistry Research, 2008, 47, 8228-8232.	1.8	32
47	Defining the Interactions between Proteins and Surfactants for Nanoparticle Surface Imprinting through Miniemulsion Polymerization. Chemistry of Materials, 2008, 20, 118-127.	3.2	82
48	Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Research, 2008, 42, 1511-1522.	5. 3	377
49	Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm. Journal of Biotechnology, 2008, 135, 52-57.	1.9	72
50	Conversion of Waste Polystyrene into Porous and Functionalized Adsorbent and Its Application in Humic Acid Removal. Industrial & Engineering Chemistry Research, 2008, 47, 1861-1867.	1.8	13
51	Membrane Aerated Biofilm Reactors: A Brief Current Review. Recent Patents on Biotechnology, 2008, 2, 88-93.	0.4	28
52	Biodegradation of organonitriles by adapted activated sludge consortium with acetonitrile-degrading microorganisms. Water Research, 2007, 41, 3465-3473.	5. 3	63
53	A novel method to prepare high chitosan content blend hollow fiber membranes using a non-acidic dope solvent for highly enhanced adsorptive performance. Journal of Membrane Science, 2007, 302, 150-159.	4.1	39

Highly Enhanced Adsorption of Lead Ions on Chitosan Granules Functionalized with Poly(acrylic) Tj ETQq $0\ 0\ 0\ rgBT$ Qverlock $\frac{10}{94}$ Tf 50 6

#	Article	IF	Citations
55	Selective adsorption behaviors of proteins on polypyrrole-based adsorbents. Separation and Purification Technology, 2006, 52, 161-169.	3.9	80
56	Diethylenetriamine-grafted poly(glycidyl methacrylate) adsorbent for effective copper ion adsorption. Journal of Colloid and Interface Science, 2006, 303, 99-108.	5.0	142
57	Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. Journal of Membrane Science, 2006, 284, 313-322.	4.1	207
58	Preparing highly porous chitosan/cellulose acetate blend hollow fibers as adsorptive membranes: Effect of polymer concentrations and coagulant compositions. Journal of Membrane Science, 2006, 279, 336-346.	4.1	51
59	Development of chitosan-based granular adsorbents for enhanced and selective adsorption performance in heavy metal removal. Water Science and Technology, 2006, 54, 103-113.	1.2	53
60	Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology, 2005, 42, 237-247.	3.9	454
61	Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance. Journal of Membrane Science, 2005, 267, 68-77.	4.1	138
62	Further work on cake filtration analysis. Chemical Engineering Science, 2005, 60, 301-313.	1.9	34
63	Effect of a commercial alcohol ethoxylate surfactant (C11-15E7) on. Biodegradation, 2005, 16, 57-65.	1.5	20
64	A Novel Amine-Shielded Surface Cross-Linking of Chitosan Hydrogel Beads for Enhanced Metal Adsorption Performance. Industrial & Engineering Chemistry Research, 2005, 44, 6692-6700.	1.8	167
65	Preparing Microgranules from Waste Polystyrene through a Novel Temperature- and Nonsolvent-Induced Phase Separation Method for Potential Adsorbent. Industrial & Engineering Chemistry Research, 2005, 44, 825-831.	1.8	6
66	Adsorption of lead and humic acid on chitosan hydrogel beads. Water Research, 2005, 39, 688-698.	5. 3	201
67	Enhanced and Selective Adsorption of Mercury Ions on Chitosan Beads Grafted with Polyacrylamide via Surface-Initiated Atom Transfer Radical Polymerization. Langmuir, 2005, 21, 11780-11787.	1.6	230
68	Adsorption and desorption of humic acid on aminated polyacrylonitrile fibers. Journal of Colloid and Interface Science, 2004, 280, 36-43.	5 . 0	72
69	Preconcentration of Phenanthrene from Aqueous Solution by a Slightly Hydrophobic Nonionic Surfactant. Langmuir, 2004, 20, 6068-6070.	1.6	23
70	Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms. Water Research, 2004, 38, 2424-2432.	5 . 3	312
71	Aminated Polyacrylonitrile Fibers for Humic Acid Adsorption:Â Behaviors and Mechanisms. Environmental Science & Technology, 2003, 37, 5799-5805.	4.6	121
72	Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Applied Microbiology and Biotechnology, 2003, 60, 588-593.	1.7	193

#	Article	IF	Citations
73	Immobilization of chitosan on nylon 6,6 and pet granules through hydrolysis pretreatment. Journal of Applied Polymer Science, 2003, 90, 3973-3979.	1.3	15
74	An assessment of the conventional cake filtration theory. Chemical Engineering Science, 2003, 58, 1323-1336.	1.9	82
75	Behaviors and mechanisms of copper adsorption on hydrolyzed polyacrylonitrile fibers. Journal of Colloid and Interface Science, 2003, 260, 265-272.	5.0	198
76	Mechanisms and kinetics of humic acid adsorption onto chitosan-coated granules. Journal of Colloid and Interface Science, 2003, 264, 30-38.	5.0	211
77	Membrane fouling and cleaning in microfiltration of activated sludge wastewater. Journal of Membrane Science, 2003, 216, 279-290.	4.1	400
78	Aminated Polyacrylonitrile Fibers for Lead and Copper Removal. Langmuir, 2003, 19, 5058-5064.	1.6	347
79	Surface Electric Properties of Polypyrrole in Aqueous Solutions. Langmuir, 2003, 19, 10703-10709.	1.6	179
80	Mechanisms of Lead Adsorption on Chitosan/PVA Hydrogel Beads. Langmuir, 2002, 18, 9765-9770.	1.6	560
81	Adsorption behavior of humic acid onto polypyrrole-coated nylon 6,6 granules. Journal of Materials Chemistry, 2002, 12, 2733-2739.	6.7	70
82	Deposition/Adsorption of Colloids to Surface-Modified Granules: Effect of Surface Interactions. Langmuir, 2002, 18, 3459-3465.	1.6	32
83	Microfiltration of activated sludge wastewaterâ€"the effect of system operation parameters. Separation and Purification Technology, 2002, 29, 189-198.	3.9	174
84	Produced water from polymer flooding process in crude oil extraction: characterization and treatment by a novel crossflow oil–water separator. Separation and Purification Technology, 2002, 29, 207-216.	3.9	119
85	Effects of alkaline/surfactant/polymer on stability of oil droplets in produced water from ASP flooding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 211, 275-284.	2.3	117
86	The practice and challenges of solid waste management in Singapore. Waste Management, 2002, 22, 557-567.	3.7	189
87	Modeling and experimental study of microfiltration using a composite module. Journal of Membrane Science, 2002, 204, 359-377.	4.1	15
88	Polypyrrole-Coated Granules for Humic Acid Removal. Journal of Colloid and Interface Science, 2001, 243, 52-60.	5.0	91
89	mufiltration of polydispersed suspension by a membrane screen/hollow-fiber composite module. Desalination, 2001, 140, 277-287.	4.0	16
90	Nylon screen incorporated into hollow fiber microfiltration system for wastewater treatment. Water Science and Technology: Water Supply, 2001, 1, 131-139.	1.0	8

#	Article	IF	CITATIONS
91	Effect of Deposition in Deep-Bed Filtration: Determination and Search of Rate Parameters. Journal of Colloid and Interface Science, 2000, 231, 299-311.	5.0	66
92	Transient behavior of particle deposition in granular media under various surface interactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 165, 95-114.	2.3	15
93	APPLICATION OF A MEMBRANE-HOLLOW FIBER COMPOSITE MODULE FOR SOLID-LIQUID SEPARATION. , 2000, , .		0
94	NATURAL ORGANIC MATTER REMOVAL IN DIRECT FILTRATION SYSTEM. , 2000, , .		0
95	SOLID WASTE MANAGEMENT IN SINGAPORE. , 2000, , .		1
96	Particle Deposition under Unfavorable Surface Interactions. Journal of Colloid and Interface Science, 1999, 218, 488-499.	5.0	71
97	Analysis of cake growth in cake filtration: Effect of fine particle retention. AICHE Journal, 1997, 43, 33-44.	1.8	99
98	Particle Detachment in Deep Bed Filtration. Journal of Colloid and Interface Science, 1997, 186, 307-317.	5.0	80
99	A New Correlation for the Initial Filter Coefficient under Unfavorable Surface Interactions. Journal of Colloid and Interface Science, 1996, 179, 631-634.	5.0	40
100	Modelling the transition between deposition modes in deep bed filtration. Water Research, 1995, 29, 2601-2604.	5. 3	7
101	Suspended particle size distribution and the performance of deep bed filters. Water Research, 1992, 26, 1571-1575.	5.3	22