Gang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2435204/publications.pdf

Version: 2024-02-01

430874 501196 2,018 28 18 28 citations h-index g-index papers 29 29 29 2650 docs citations all docs times ranked citing authors

#	Article	IF	CITATIONS
1	Phytochrome Signaling Mechanisms. The Arabidopsis Book, 2011, 9, e0148.	0.5	336
2	Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nature Cell Biology, 2011, 13, 616-622.	10.3	245
3	<i>Arabidopsis</i> Transcription Factor ELONGATED HYPOCOTYL5 Plays a Role in the Feedback Regulation of Phytochrome A Signaling Â. Plant Cell, 2010, 22, 3634-3649.	6.6	165
4	The Arabidopsis thaliana Nuclear Factor Y Transcription Factors. Frontiers in Plant Science, 2016, 07, 2045.	3.6	158
5	<i>Arabidopsis</i> FHY3 and HY5 Positively Mediate Induction of <i>COP1</i> Transcription in Response to Photomorphogenic UV-B Light. Plant Cell, 2012, 24, 4590-4606.	6.6	157
6	FAR1-RELATED SEQUENCE (FRS) and FRS-RELATED FACTOR (FRF) Family Proteins in Arabidopsis Growth and Development. Frontiers in Plant Science, 2018, 9, 692.	3.6	130
7	Genome-Wide Binding Site Analysis of FAR-RED ELONGATED HYPOCOTYL3 Reveals Its Novel Function in <i>Arabidopsis</i>	6.6	118
8	Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC Plant Biology, 2018, 18, 235.	3.6	102
9	Arabidopsis FHY3 and FAR1 Regulate Light-Induced myo -Inositol Biosynthesis and Oxidative Stress Responses by Transcriptional Activation of MIPS1. Molecular Plant, 2016, 9, 541-557.	8.3	81
10	Arabidopsis FAR-RED ELONGATED HYPOCOTYL3 Integrates Age and Light Signals to Negatively Regulate Leaf Senescence. Plant Cell, 2020, 32, 1574-1588.	6.6	58
11	WRKY18 and WRKY53 Coordinate with HISTONE ACETYLTRANSFERASE1 to Regulate Rapid Responses to Sugar. Plant Physiology, 2019, 180, 2212-2226.	4.8	54
12	Auxin-Dependent Cell Elongation During the Shade Avoidance Response. Frontiers in Plant Science, 2019, 10, 914.	3.6	53
13	Transcription Factors FHY3 and FAR1 Regulate Light-Induced <i>CIRCADIAN CLOCK ASSOCIATED1</i> Gene Expression in Arabidopsis. Plant Cell, 2020, 32, 1464-1478.	6.6	50
14	<i>Arabidopsis thaliana</i> FARâ€RED ELONGATED HYPOCOTYLS3 (FHY3) and FARâ€REDâ€IMPAIRED RESPONSE (FAR1) modulate starch synthesis in response to light and sugar. New Phytologist, 2017, 213, 1682-1696.	1 _{7.3}	49
15	Functional Characterization of the Maize Phytochrome-Interacting Factors PIF4 and PIF5. Frontiers in Plant Science, 2017, 8, 2273.	3.6	46
16	Regulation of Leaf Angle by Auricle Development in Maize. Molecular Plant, 2017, 10, 516-519.	8.3	33
17	Dynamic epigenetic modifications in plant sugar signal transduction. Trends in Plant Science, 2022, 27, 379-390.	8.8	24
18	Arabidopsis NUCLEAR FACTOR Y A8 inhibits the juvenile-to-adult transition by activating transcription of MIR156s. Journal of Experimental Botany, 2020, 71, 4890-4902.	4.8	23

#	Article	IF	CITATION
19	Molecular mechanisms governing shade responses in maize. Biochemical and Biophysical Research Communications, 2019, 516, 112-119.	2.1	22
20	Molecular and functional dissection of EARLY-FLOWERING 3 (ELF3) and ELF4 in Arabidopsis. Plant Science, 2021, 303, 110786.	3.6	22
21	Light and Abscisic Acid Coordinately Regulate Greening of Seedlings. Plant Physiology, 2020, 183, 1281-1294.	4.8	18
22	Chromatin and regulatory differentiation between bundle sheath and mesophyll cells in maize. Plant Journal, 2022, 109, 675-692.	5.7	16
23	Arabidopsis ELF4-like proteins EFL1 and EFL3 influence flowering time. Gene, 2019, 700, 131-138.	2.2	15
24	<scp>FARâ€RED ELONGATED HYPOCOTYLS3</scp> negatively regulates shade avoidance responses in <i>Arabidopsis</i> . Plant, Cell and Environment, 2019, 42, 3280-3292.	5.7	11
25	Arabidopsis FARâ€RED ELONGATED HYPOCOTYL3 negatively regulates carbon starvation responses. Plant, Cell and Environment, 2021, 44, 1816-1829.	5.7	11
26	The transcription factor PagLBD3 contributes to the regulation of secondary growth in <i>Populus</i> . Journal of Experimental Botany, 2021, 72, 7092-7106.	4.8	10
27	Characterization of regulatory modules controlling leaf angle in maize. Plant Physiology, 2022, 190, 500-515.	4.8	10
28	Heterologous expression of ELF4 from Chlamydomonas reinhardtii and Physcomitrella patens delays flowering in Arabidonsis thaliana. Plant Systematics and Evolution, 2019, 305, 777-785.	0.9	1