
Aaron P Thrift

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2434829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association of lifestyle behaviors with non-alcoholic fatty liver disease and advanced fibrosis detected by transient elastography among Hispanic/Latinos adults in the U.S Ethnicity and Health, 2023, 28, 299-312.	1.5	10
2	Risk factors for HCC in contemporary cohorts of patients with cirrhosis. Hepatology, 2023, 77, 997-1005.	3.6	36
3	Inverse Association Between Gluteofemoral Obesity and Risk of Non-Cardia Gastric Intestinal Metaplasia. Clinical Gastroenterology and Hepatology, 2023, 21, 64-71.	2.4	2
4	Missed Opportunities for Screening or Surveillance Among Patients with Newly Diagnosed Non-cardia Gastric Adenocarcinoma. Digestive Diseases and Sciences, 2023, 68, 761-769.	1.1	1
5	Multitrait genetic association analysis identifies 50 new risk loci for gastro-oesophageal reflux, seven new loci for Barrett's oesophagus and provides insights into clinical heterogeneity in reflux diagnosis. Gut, 2022, 71, 1053-1061.	6.1	74
6	Trends in the incidence of earlyâ€onset colorectal cancer in all 50 United States from 2001 through 2017. Cancer, 2022, 128, 299-310.	2.0	19
7	Comparative performance of risk prediction models for hepatitis B-related hepatocellular carcinoma in the United States. Journal of Hepatology, 2022, 76, 294-301.	1.8	20
8	Associations of Duration, Intensity, and Quantity of Smoking With Risk of Gastric Intestinal Metaplasia. Journal of Clinical Gastroenterology, 2022, 56, e71-e76.	1.1	9
9	Physical activity and diet quality in relation to non-alcoholic fatty liver disease: A cross-sectional study in a representative sample of U.S. adults using NHANES 2017–2018 Preventive Medicine, 2022, 154, 106903.	1.6	21
10	External validation of a model determining risk of neoplastic progression of Barrett's esophagus in a cohort of U.S. veterans. Gastrointestinal Endoscopy, 2022, 95, 1113-1122.	0.5	3
11	Black patients with multiple myeloma have better survival than white patients when treated equally: a matched cohort study. Blood Cancer Journal, 2022, 12, 34.	2.8	22
12	Mediating Effects of Neighborhood-Level Socioeconomic Deprivation on the Association Between Race/Ethnicity and Advanced Hepatocellular Carcinoma. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1402-1409.	1.1	7
13	Perceptions of weight status and energy balance behaviors among patients with non-alcoholic fatty liver disease. Scientific Reports, 2022, 12, 5695.	1.6	6
14	Race/Ethnicity and Birthplace as Risk Factors for Gastric Intestinal Metaplasia in a Multiethnic United States Population. American Journal of Gastroenterology, 2022, 117, 280-287.	0.2	10
15	Increasing Incidence of Gallbladder Cancer among Non-Hispanic Blacks in the United States: A Birth Cohort Phenomenon. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1410-1417.	1.1	2
16	Surveillance after Treatment of Barrett's Esophagus Benefits Those with High-Grade Dysplasia or Intramucosal Cancer Most. American Journal of Gastroenterology, 2022, Publish Ahead of Print, .	0.2	1
17	Sociodemographic and Facility-Related Disparities in the Delivery of Guideline-Concordant Therapy Among Patients With Esophageal Adenocarcinoma. JCO Oncology Practice, 2022, 18, e1181-e1197.	1.4	1
18	Socioeconomic disadvantage contributes to ethnic disparities in multiple myeloma survival: a matched cohort study. Blood Cancer Journal, 2022, 12, .	2.8	3

#	Article	IF	CITATIONS
19	Response to Swami et al American Journal of Gastroenterology, 2022, 117, 1012-1012.	0.2	Ο
20	Admixture mapping in African Americans identifies new risk loci for HCV-related cirrhosis. Clinical Gastroenterology and Hepatology, 2022, , .	2.4	1
21	External Validation of Four Point-of-Care Noninvasive Scores for Predicting Advanced Hepatic Fibrosis in a Predominantly Hispanic NAFLD Population. Digestive Diseases and Sciences, 2021, 66, 2387-2393.	1.1	8
22	Incidence of Hepatocellular Carcinoma in Primary Biliary Cholangitis: A Systematic Review and Meta-Analysis. Digestive Diseases and Sciences, 2021, 66, 2439-2451.	1.1	23
23	Texas Has the Highest Hepatocellular Carcinoma Incidence Rates in the USA. Digestive Diseases and Sciences, 2021, 66, 912-916.	1.1	19
24	Burden of Pancreatic Cancer: From Epidemiology to Practice. Clinical Gastroenterology and Hepatology, 2021, 19, 876-884.	2.4	166
25	Prevalence of Gastric Intestinal Metaplasia in a Multiethnic US Veterans Population. Clinical Gastroenterology and Hepatology, 2021, 19, 269-276.e3.	2.4	17
26	Women Have a Lower Risk of Nonalcoholic Fatty Liver Disease but a Higher Risk of Progression vs Men: A Systematic Review and Meta-analysis. Clinical Gastroenterology and Hepatology, 2021, 19, 61-71.e15.	2.4	159
27	Increasing Incidence of Advanced Non-cardia Gastric Cancers Among Younger Hispanics in the USA. Digestive Diseases and Sciences, 2021, 66, 1669-1672.	1.1	11
28	Dietary Factors and Gastric Intestinal Metaplasia Risk Among US Veterans. Digestive Diseases and Sciences, 2021, 66, 1600-1610.	1.1	5
29	Prevalence of Barrett's esophagus and performance of societalÂscreening guidelines in an unreferred primary care population of U.S. veterans. Gastrointestinal Endoscopy, 2021, 93, 409-419.e1.	0.5	34
30	Does Risk of Progression from Barrett's Esophagus to Esophageal Adenocarcinoma Change Based on the Number of Non-dysplastic Endoscopies?. Digestive Diseases and Sciences, 2021, 66, 1965-1973.	1.1	4
31	Epidemiology of Barrett's Esophagus and Esophageal Adenocarcinoma. Gastrointestinal Endoscopy Clinics of North America, 2021, 31, 1-26.	0.6	25
32	A comprehensive re-assessment of the association between vitamin D and cancer susceptibility using Mendelian randomization. Nature Communications, 2021, 12, 246.	5.8	39
33	Predictors of five-year survival among patients with hepatocellular carcinoma in the United States: an analysis of SEER-Medicare. Cancer Causes and Control, 2021, 32, 317-325.	0.8	25
34	International Trends in Esophageal Squamous Cell Carcinoma and Adenocarcinoma Incidence. American Journal of Gastroenterology, 2021, 116, 1072-1076.	0.2	19
35	Global burden and epidemiology of Barrett oesophagus and oesophageal cancer. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 432-443.	8.2	144
36	Evaluating the Revised American Society for Gastrointestinal Endoscopy Guidelines for Common Bile Duct Stone Diagnosis. Clinical Endoscopy, 2021, 54, 269-274.	0.6	16

1

#	Article	IF	CITATIONS
37	Modest Impact of Liver Transplantation on Hepatocellular Carcinoma Mortality in the United States, Findings from The Transplant Cancer Match (TCM) Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 435-437.	1.1	0
38	Prevalence and Predictors of Missed Dysplasia on Index Barrett's Esophagus Diagnosing Endoscopy in a Veteran Population. Clinical Gastroenterology and Hepatology, 2021, , .	2.4	4
39	Prevalence and factors associated with NAFLD detected by vibration controlled transient elastography among US adults: Results from NHANES 2017–2018. PLoS ONE, 2021, 16, e0252164.	1.1	64
40	Preventable causes of cancer in Texas by race/ethnicity: tobacco smoking. Epidemiology and Health, 2021, 43, e2021046.	0.8	0
41	Gastric Cancer Epidemiology. Gastrointestinal Endoscopy Clinics of North America, 2021, 31, 425-439.	0.6	48
42	Risk Score Using Demographic and Clinical Risk Factors Predicts Gastric Intestinal Metaplasia Risk in a U.S. Population. Digestive Diseases and Sciences, 2021, , 1.	1.1	4
43	Alcohol consumption and the risk of gastric intestinal metaplasia in a U.S. Veterans population. PLoS ONE, 2021, 16, e0260019.	1.1	3
44	Preventable causes of cancer in Texas by Race/Ethnicity: Inadequate diet. Preventive Medicine Reports, 2021, 24, 101637.	0.8	0
45	Statin use and risk of liver cancer: Evidence from two populationâ€based studies. International Journal of Cancer, 2020, 146, 1250-1260.	2.3	48
46	Burden of Gastric Cancer. Clinical Gastroenterology and Hepatology, 2020, 18, 534-542.	2.4	775
47	Melanoma Incidence Among Non-Hispanic Whites in All 50 US States From 2001 Through 2015. Journal of the National Cancer Institute, 2020, 112, 533-539.	3.0	32
48	Preventable causes of cancer in Texas by race/ethnicity: Alcohol consumption. Alcohol, 2020, 85, 21-26.	0.8	3
49	Decreasing Overall and Inappropriate Proton Pump Inhibitor Use:ÂPerspective From a Large Safety-Net Healthcare System. Clinical Gastroenterology and Hepatology, 2020, 18, 763-766.e2.	2.4	16
50	Prevalence of Helicobacter pylori Positive Non-cardia Gastric Adenocarcinoma Is Low and Decreasing in a US Population. Digestive Diseases and Sciences, 2020, 65, 2403-2411.	1.1	20
51	Demographic and Lifestyle Risk Factors for Gastric Intestinal Metaplasia Among US Veterans. American Journal of Gastroenterology, 2020, 115, 381-387.	0.2	34
52	Risk Prediction Models for Barrett's Esophagus Discriminate Well and Are Generalizable in an External Validation Study. Digestive Diseases and Sciences, 2020, 65, 2992-2999.	1.1	5
53	Use of Acid-Suppressant Medications After Diagnosis Increases Mortality in a Subset of Gastrointestinal Cancer Patients. Digestive Diseases and Sciences, 2020, 65, 2691-2699.	1.1	6

54 Screening and Early Detection. , 2020, , 375-398.e7.

#	Article	IF	CITATIONS
55	Association Between Levels of Sex Hormones and Risk of Esophageal Adenocarcinoma and Barrett's Esophagus. Clinical Gastroenterology and Hepatology, 2020, 18, 2701-2709.e3.	2.4	12
56	Trends in the Incidence of Pancreatic Adenocarcinoma in All 50 United States Examined Through an Age-Period-Cohort Analysis. JNCI Cancer Spectrum, 2020, 4, pkaa033.	1.4	22
57	Low Yield of Hepatitis C Infection in an Outreach Screening Program in Harris County, Texas. Open Forum Infectious Diseases, 2020, 7, ofaa191.	0.4	3
58	Persistent Challenges in the Hepatitis C Virus Care Continuum for Patients in a Central Texas Public Health System. Open Forum Infectious Diseases, 2020, 7, ofaa322.	0.4	10
59	Sex Differences in the Risk of Barrett's Esophagus Associated With the Metabolic Effects of Obesity. Journal of Clinical Gastroenterology, 2020, 54, 795-800.	1.1	6
60	Response to Zhu and Xu. American Journal of Gastroenterology, 2020, 115, 1725-1725.	0.2	0
61	Racial/Ethnic Differences in Cancers Attributable to Preventable Infectious Agents in Texas, 2015. Public Health Reports, 2020, 135, 805-812.	1.3	2
62	Preventable causes of cancer in Texas by race/ethnicity: insufficient physical activity. BMJ Nutrition, Prevention and Health, 2020, 3, 172-179.	1.9	0
63	Sex-Specific Genetic Associations for Barrett's Esophagus and Esophageal Adenocarcinoma. Gastroenterology, 2020, 159, 2065-2076.e1.	0.6	16
64	The Esophageal Adenocarcinoma Epidemic Has Reached Hungary: A Multicenter, Cross-Sectional Study. Frontiers in Oncology, 2020, 10, 541794.	1.3	2
65	Outcomes Among Minority Patients With Metastatic Colorectal Cancer in a Safety-net Health Care System. Clinical Colorectal Cancer, 2020, 19, e49-e57.	1.0	5
66	Shared Genetic Etiology of Obesity-Related Traits and Barrett's Esophagus/Adenocarcinoma: Insights from Genome-Wide Association Studies. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 427-433.	1.1	7
67	Systematic review with metaâ€analysis: prevalence of prior and concurrent Barrett's oesophagus in oesophageal adenocarcinoma patients. Alimentary Pharmacology and Therapeutics, 2020, 52, 20-36.	1.9	48
68	Sex and Race Disparities in the Incidence of Hepatocellular Carcinoma in the United States Examined through Age–Period–Cohort Analysis. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 88-94.	1.1	27
69	Lorenz Curves and Gini Coefficient Analyses Indicate Inefficiencies in Esophageal Adenocarcinoma Screening. Clinical Gastroenterology and Hepatology, 2019, 17, 560-562.e2.	2.4	5
70	Validation of <scp>HIV</scp> â€infected cohort identification using automated clinical data in the Department of Veterans Affairs. HIV Medicine, 2019, 20, 567-570.	1.0	19
71	Diabetes in relation to Barrett's esophagus and adenocarcinomas of the esophagus: A pooled study from the International Barrett's and Esophageal Adenocarcinoma Consortium. Cancer, 2019, 125, 4210-4223.	2.0	13
72	<p>Prospective implementation of algorithmic patient selection for gastrostomy tube placement consultations: a pre- and post-intervention analysis</p> . Clinical and Experimental Gastroenterology, 2019, Volume 12, 231-237.	1.0	0

#	Article	IF	CITATIONS
73	Authors' reply to: Statin use and risk of liver cancer. International Journal of Cancer, 2019, 145, 2009.	2.3	1
74	External validation of a model to determine risk of progression of Barrett's oesophagus to neoplasia. Alimentary Pharmacology and Therapeutics, 2019, 49, 1274-1281.	1.9	18
75	No Association Between Vitamin D Status and Risk of Barrett's Esophagus or Esophageal Adenocarcinoma: A Mendelian Randomization Study. Clinical Gastroenterology and Hepatology, 2019, 17, 2227-2235.e1.	2.4	16
76	Factors associated with favorable survival outcomes for Asians with hepatocellular carcinoma: A sequential matching cohort study. PLoS ONE, 2019, 14, e0214721.	1.1	14
77	Statin Use After Diagnosis of Hepatocellular Carcinoma Is Associated With Decreased Mortality. Clinical Gastroenterology and Hepatology, 2019, 17, 2117-2125.e3.	2.4	29
78	Ancestry and Risk of Hepatic Fibrosis and Inflammation in Patients With HCV Infection. Clinical Gastroenterology and Hepatology, 2019, 17, 1912-1914.	2.4	0
79	Changing Trends in Colorectal Cancers (Detected by Screening, During Screening Intervals, or) Tj ETQq1 1 0.7843 Gastroenterology, 2019, 156, 809-811.	314 rgBT / 0.6	Overlock 10 3
80	Missed Opportunities for Screening and Surveillance of Barrett's Esophagus in Veterans with Esophageal Adenocarcinoma. Digestive Diseases and Sciences, 2019, 64, 367-372.	1.1	22
81	Information on Genetic Variants Does Not Increase Identification of Individuals at Risk of Esophageal Adenocarcinoma Compared to Clinical Risk Factors. Gastroenterology, 2019, 156, 43-45.	0.6	15
82	Factors Associated With Recurrence of Barrett's Esophagus After Radiofrequency Ablation. Clinical Gastroenterology and Hepatology, 2019, 17, 65-72.e5.	2.4	37
83	Underuse of Surgery Accounts for Racial Disparities in Esophageal Cancer Survival Times: A Matched Cohort Study. Clinical Gastroenterology and Hepatology, 2019, 17, 657-665.e13.	2.4	25
84	Time to Tailor Surveillance Intervals of Nondysplastic Barrett's Esophagus According to Segment Length and Persistence Over Multiple Endoscopies. Clinical Gastroenterology and Hepatology, 2019, 17, 832-834.	2.4	8
85	Barrett's Esophagus and Esophageal Adenocarcinoma: How Common Are They Really?. Digestive Diseases and Sciences, 2018, 63, 1988-1996.	1.1	75
86	Development of Evidence-Based Surveillance Intervals After Radiofrequency Ablation of Barrett's Esophagus. Gastroenterology, 2018, 155, 316-326.e6.	0.6	60
87	Adult height is associated with increased risk of ovarian cancer: a Mendelian randomisation study. British Journal of Cancer, 2018, 118, 1123-1129.	2.9	15
88	Factors That Contribute to Indeterminate Results From theÂQuantiFERON-TB Gold In-Tube Test in Patients WithÂInflammatory Bowel Disease. Clinical Gastroenterology and Hepatology, 2018, 16, 1616-1621.e1.	2.4	16
89	Determining Risk of Barrett's Esophagus and Esophageal Adenocarcinoma Based on Epidemiologic Factors and GeneticÂVariants. Gastroenterology, 2018, 154, 1273-1281.e3.	0.6	67
90	Model for Identifying Individuals at Risk for Esophageal Adenocarcinoma. Clinical Gastroenterology and Hepatology, 2018, 16, 1229-1236.e4.	2.4	41

#	Article	IF	CITATIONS
91	Interactions Between Genetic Variants and Environmental Factors Affect Risk of Esophageal Adenocarcinoma and Barrett's Esophagus. Clinical Gastroenterology and Hepatology, 2018, 16, 1598-1606.e4.	2.4	16
92	Impact of cap-assisted colonoscopy on the learning curve and quality in colonoscopy: a randomized controlled trial. Gastrointestinal Endoscopy, 2018, 87, 723-732.e3.	0.5	17
93	Editorial: less acid, less cancer? Is this the question? Authors' reply. Alimentary Pharmacology and Therapeutics, 2018, 48, 878-879.	1.9	0
94	Risk of Hepatocellular Cancer in Patients With Non-Alcoholic Fatty Liver Disease. Gastroenterology, 2018, 155, 1828-1837.e2.	0.6	490
95	Helicobacter pylori Infection and Gastroesophageal Reflux Disease—Barrett's Esophagus-Esophageal Adenocarcinoma Sequence: Reply From Authors. American Journal of Gastroenterology, 2018, 113, 1724-1725.	0.2	0
96	Diagnostics for Pleiotropy in Mendelian Randomization Studies: Global and Individual Tests for Direct Effects. American Journal of Epidemiology, 2018, 187, 2672-2680.	1.6	18
97	Are Non-HIV Malignancies Increased in the HIV-Infected Population?. Current Infectious Disease Reports, 2018, 20, 22.	1.3	26
98	The Association Between Statin Use After Diagnosis and Mortality Risk in Patients With Esophageal Cancer: A retrospective cohort Study of united States Veterans. American Journal of Gastroenterology, 2018, 113, 1310.	0.2	28
99	Acid suppression medications reduce risk of oesophageal adenocarcinoma in Barrett's oesophagus: a nested caseâ€control study in <scp>US</scp> male veterans. Alimentary Pharmacology and Therapeutics, 2018, 48, 469-477.	1.9	32
100	Proton pump inhibitor and histamineâ€2 receptor antagonist use and risk of liver cancer in two populationâ€based studies. Alimentary Pharmacology and Therapeutics, 2018, 48, 55-64.	1.9	36
101	Prior Diagnosis of Barrett's Esophagus Is Infrequent, but Associated with Improved Esophageal Adenocarcinoma Survival. Digestive Diseases and Sciences, 2018, 63, 3112-3119.	1.1	25
102	Helicobacter pylori Infection Is Associated With Reduced Risk of Barrett's Esophagus: An Analysis of the Barrett's and Esophageal Adenocarcinoma Consortium. American Journal of Gastroenterology, 2018, 113, 1148-1155.	0.2	57
103	Incidence of gastric cancer in the USA during 1999 to 2013: a 50-state analysis. International Journal of Epidemiology, 2018, 47, 966-975.	0.9	59
104	Clinical Manifestations of Helicobacter pylori–Negative Gastritis. Clinical Gastroenterology and Hepatology, 2017, 15, 1037-1046.e3.	2.4	40
105	Incidence and Determinants of Hepatocellular Carcinoma in Autoimmune Hepatitis: A Systematic Review and Meta-analysis. Clinical Gastroenterology and Hepatology, 2017, 15, 1207-1217.e4.	2.4	71
106	External Validation of the Michigan Barrett's Esophagus Prediction Tool. Clinical Gastroenterology and Hepatology, 2017, 15, 1124-1126.	2.4	19
107	The Annual Risk of Esophageal Adenocarcinoma Does Not Decrease Over Time in Patients With Barrett's Esophagus. American Journal of Gastroenterology, 2017, 112, 1049-1055.	0.2	16
108	NAFLD-Related HCC: How Should the Shift in Epidemiology Change Our Prevention and Surveillance Strategies?. Current Hepatology Reports, 2017, 16, 26-32.	0.4	0

#	Article	IF	CITATIONS
109	High Negative Predictive Value, Low Prevalence, and Spectrum Effect: Caution in the Interpretation. Clinical Gastroenterology and Hepatology, 2017, 15, 1355-1358.	2.4	13
110	Germline variation in inflammation-related pathways and risk of Barrett's oesophagus and oesophageal adenocarcinoma. Gut, 2017, 66, 1739-1747.	6.1	38
111	Global epidemiology and burden of HCV infection and HCV-related disease. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 122-132.	8.2	317
112	Shiftwork Is Not Associated with Increased Risk of NAFLD: Findings from the National Health and Nutrition Examination Survey. Digestive Diseases and Sciences, 2017, 62, 526-533.	1.1	27
113	Alcohol, smoking and risk of oesophago-gastric cancer. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2017, 31, 509-517.	1.0	79
114	Can We Accurately Predict Survival in Patients With Perihilar Cholangiocarcinoma?. Clinical Gastroenterology and Hepatology, 2017, 15, 1860-1862.	2.4	0
115	Obesity and Risk of Nonalcoholic Fatty Liver Disease: A Comparison of Bioelectrical Impedance Analysis and Conventionally-Derived Anthropometric Measures. Clinical Gastroenterology and Hepatology, 2017, 15, 1965-1967.	2.4	10
116	Prevalence of Celiac Disease Among Unsuspected Patients Presenting to Open Access Endoscopy. Clinical Gastroenterology and Hepatology, 2017, 15, 137-139.	2.4	0
117	Hepatocellular carcinoma in the absence of cirrhosis in patients with chronic hepatitis B virus infection. Journal of Hepatology, 2017, 66, 355-362.	1.8	104
118	Acculturation and Nonalcoholic Fatty Liver Disease Risk Among Hispanics of Mexican Origin: Findings From the National Health and Nutrition Examination Survey. Clinical Gastroenterology and Hepatology, 2017, 15, 310-312.	2.4	12
119	Incidence of Hepatocellular Carcinoma in All 50 United States, From 2000 Through 2012. Gastroenterology, 2017, 152, 812-820.e5.	0.6	339
120	Risk Profiles for Barrett's Esophagus Differ between New and Prevalent, and Long- and Short-Segment Cases. PLoS ONE, 2016, 11, e0169250.	1.1	4
121	Determination of risk for Barrett's esophagus and esophageal adenocarcinoma. Current Opinion in Gastroenterology, 2016, 32, 319-324.	1.0	11
122	Adult body mass index and risk of ovarian cancer by subtype: a Mendelian randomization study. International Journal of Epidemiology, 2016, 45, 884-895.	0.9	71
123	A Model to Predict the Risk of Keratinocyte Carcinomas. Journal of Investigative Dermatology, 2016, 136, 1247-1254.	0.3	31
124	Prediction Models for Gastrointestinal and Liver Diseases: Too Many Developed, Too Few Validated. Clinical Gastroenterology and Hepatology, 2016, 14, 1678-1680.	2.4	23
125	Weight Change and Weight Cycling AreÂNotÂAssociated With Risk of Barrett'sÂEsophagus. Clinical Gastroenterology and Hepatology, 2016, 14, 1839-1840.	2.4	0
126	Nonsteroidal Anti-Inflammatory Drug Use is Not Associated With Reduced Risk of Barrett's Esophagus. American Journal of Gastroenterology, 2016, 111, 1528-1535.	0.2	28

#	Article	IF	CITATIONS
127	Common variants in the obesity-associated genes FTO and MC4R are not associated with risk of colorectal cancer. Cancer Epidemiology, 2016, 44, 1-4.	0.8	12
128	Premature Birth and Large for Gestational Age Are Associated with Risk of Barrett's Esophagus in Adults. Digestive Diseases and Sciences, 2016, 61, 1139-1147.	1.1	1
129	Inverse Association Between Cluteofemoral Obesity and Risk ofÂBarrett's Esophagus in a Pooled Analysis. Clinical Gastroenterology and Hepatology, 2016, 14, 1412-1419.e3.	2.4	12
130	Obesity in Relation to Risk of Esophageal Adenocarcinoma and Barrett's Esophagus. Current Nutrition Reports, 2016, 5, 41-47.	2.1	0
131	The epidemic of oesophageal carcinoma: Where are we now?. Cancer Epidemiology, 2016, 41, 88-95.	0.8	217
132	Sex and Racial DisparityÂin Incidence ofÂEsophageal Adenocarcinoma: Observations and Explanations. Clinical Gastroenterology and Hepatology, 2016, 14, 330-332.	2.4	24
133	Coffee or Tea, Hot or Cold, Are Not Associated With Risk of Barrett's Esophagus. Clinical Gastroenterology and Hepatology, 2016, 14, 769-772.	2.4	12
134	Symptoms of Obstructive Sleep Apnea, Gastroesophageal Reflux and the Risk of Barrett's Esophagus in a Population-Based Case-Control Study. PLoS ONE, 2015, 10, e0129836.	1.1	16
135	Mendelian randomization study of height and risk of colorectal cancer. International Journal of Epidemiology, 2015, 44, 662-672.	0.9	55
136	Mendelian Randomization Study of Body Mass Index and Colorectal Cancer Risk. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1024-1031.	1.1	67
137	Risk factors and populations at risk: Selection of patients for screening for Barrett's oesophagus. Bailliere's Best Practice and Research in Clinical Gastroenterology, 2015, 29, 41-50.	1.0	40
138	Esophageal Adenocarcinoma: The Influence of Medications Used to Treat Comorbidities on Cancer Prognosis. Clinical Gastroenterology and Hepatology, 2015, 13, 2225-2232.	2.4	9
139	Metabolic syndrome and the risk of Barrett's oesophagus in white males. Alimentary Pharmacology and Therapeutics, 2015, 41, 1182-1189.	1.9	21
140	Unravelling the Riddle of Gastroesophageal Reflux Disease, Obesity, and Barrett's Esophagus. Clinical Gastroenterology and Hepatology, 2015, 13, 2273-2275.	2.4	13
141	The effect of obesity on pregnancy outcomes among Australian Indigenous and nonâ€Indigenous women. Medical Journal of Australia, 2014, 201, 592-595.	0.8	32
142	Alcohol and the Risk of Barrett's Esophagus: A Pooled Analysis from the International BEACON Consortium. American Journal of Gastroenterology, 2014, 109, 1586-1594.	0.2	55
143	Obesity and Risk of Esophageal Adenocarcinoma and Barrett's Esophagus: A Mendelian Randomization Study. Journal of the National Cancer Institute, 2014, 106, .	3.0	132
144	Risk Factors for Barrett's Esophagus Compared Between African Americans and Non-Hispanic Whites. American Journal of Gastroenterology, 2014, 109, 1870-1880.	0.2	34

#	Article	IF	CITATIONS
145	Fat Mass by Bioelectrical Impedance Analysis is not Associated With Increased Risk of Barrett Esophagus. Journal of Clinical Gastroenterology, 2014, 48, 218-223.	1.1	25
146	Effects of Physical Activity on Melatonin Levels in Previously Sedentary Men and Women. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 1696-1699.	1.1	10
147	Risk of Esophageal Adenocarcinoma Decreases With Height, Based on Consortium Analysis and Confirmed by Mendelian Randomization. Clinical Gastroenterology and Hepatology, 2014, 12, 1667-1676.e1.	2.4	30
148	No Significant Effects of Smoking or Alcohol Consumption on Risk of Barrett's Esophagus. Digestive Diseases and Sciences, 2014, 59, 108-116.	1.1	46
149	A Multibiomarker Risk Score Helps Predict Risk for Barrett'sÂEsophagus. Clinical Gastroenterology and Hepatology, 2014, 12, 1267-1271.	2.4	66
150	A Model to Determine Absolute Risk for Esophageal Adenocarcinoma. Clinical Gastroenterology and Hepatology, 2013, 11, 138-144.e2.	2.4	68
151	Can we really predict risk of cancer?. Cancer Epidemiology, 2013, 37, 349-352.	0.8	21
152	Age at Onset of GERD Symptoms Predicts Risk of Barrett's Esophagus. American Journal of Gastroenterology, 2013, 108, 915-922.	0.2	88
153	The incidence of esophageal adenocarcinoma continues to rise: analysis of period and birth cohort effects on recent trends. Annals of Oncology, 2012, 23, 3155-3162.	0.6	298
154	A Clinical Risk Prediction Model for Barrett Esophagus. Cancer Prevention Research, 2012, 5, 1115-1123.	0.7	67
155	<i>Helicobacter pylori</i> infection and the risks of Barrett's oesophagus: A populationâ€based case–control study. International Journal of Cancer, 2012, 130, 2407-2416.	2.3	51
156	The influence of prediagnostic demographic and lifestyle factors on esophageal squamous cell carcinoma survival. International Journal of Cancer, 2012, 131, E759-68.	2.3	52
157	Predictors of survival among patients diagnosed with adenocarcinoma of the esophagus and gastroesophageal junction. Cancer Causes and Control, 2012, 23, 555-564.	0.8	27
158	The use of nonsteroidal anti-inflammatory drugs and the risk of Barrett's oesophagus. Alimentary Pharmacology and Therapeutics, 2011, 34, 1235-1244.	1.9	28