Cathy M Craig

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/243446/publications.pdf

Version: 2024-02-01

86 2,864 31 51 papers citations h-index g-index

87 87 87 2478 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Developmental differences across the lifespan in the use of perceptual information to guide action-based decisions. Psychological Research, 2022, 86, 268-283.	1.7	2
2	Can We Use the Oculus Quest VR Headset and Controllers to Reliably Assess Balance Stability?. Diagnostics, 2022, 12, 1409.	2.6	6
3	Using a virtual reality cricket simulator to explore the effects of pressure, competition anxiety on batting performance in cricket. Psychology of Sport and Exercise, 2022, 63, 102244.	2.1	2
4	Spinal reflexive movement follows general tau theory. BMC Neuroscience, 2021, 22, 23.	1.9	1
5	A goalkeeper's performance in stopping free kicks reduces when the defensive wall blocks their initial view of the ball. PLoS ONE, 2020, 15, e0243287.	2.5	2
6	Title is missing!. , 2020, 15, e0243287.		0
7	Title is missing!. , 2020, 15, e0243287.		O
8	Title is missing!. , 2020, 15, e0243287.		0
9	Title is missing!. , 2020, 15, e0243287.		O
10	The Limitations of Being a Copycat: Learning Golf Putting Through Auditory and Visual Guidance. Frontiers in Psychology, 2019, 10, 92.	2.1	10
11	Age-related differences in the perception of gap affordances: Impact of standardized action capabilities on road-crossing judgements. Accident Analysis and Prevention, 2019, 129, 21-29.	5.7	11
12	Detecting Deceptive Movement in $1\ vs.\ 1$ Based on Global Body Displacement of a Rugby Player. The International Journal of Virtual Reality, 2019, $8, 31-36$.	2.2	10
13	Experiencing visual impairment in a lifetime home: an interpretative phenomenological inquiry. Journal of Housing and the Built Environment, 2018, 33, 45-67.	1.8	6
14	Living Independently: Exploring the Experiences of Visually Impaired People Living in Age-Related and Lifetime Housing Through Qualitative Synthesis. Herd, 2018, 11, 56-71.	1.5	2
15	Crossing Virtual Doors: A New Method to Study Gait Impairments and Freezing of Gait in Parkinson's Disease. Parkinson's Disease, 2018, 2018, 1-8.	1.1	11
16	Virtual Footprints Can Improve Walking Performance in People With Parkinson's Disease. Frontiers in Neurology, 2018, 9, 681.	2.4	23
17	Sensory substitution: Using a vibrotactile device to orient and walk to targets Journal of Experimental Psychology: Applied, 2018, 24, 108-124.	1.2	13
18	Shoaling promotes place over response learning but does not facilitate individual learning of that strategy in zebrafish (Danio rerio). BMC Zoology, 2017, 2, .	1.0	8

#	Article	IF	CITATIONS
19	Expert players accurately detect an opponent's movement intentions through sound alone Journal of Experimental Psychology: Human Perception and Performance, 2017, 43, 348-359.	0.9	40
20	Players' Performance in Cross Generational Game Playing. Lecture Notes in Computer Science, 2017, , 170-182.	1.3	1
21	Editorial: Sound, Music, and Movement in Parkinson's Disease. Frontiers in Neurology, 2016, 7, 216.	2.4	7
22	Beyond the Metronome: Auditory Events and Music May Afford More than Just Interval Durations as Gait Cues in Parkinson's Disease. Frontiers in Neuroscience, 2016, 10, 272.	2.8	49
23	Auditory cueing in Parkinson's patients with freezing of gait. What matters most: Action-relevance or cue-continuity?. Neuropsychologia, 2016, 87, 54-62.	1.6	67
24	Meeting the Needs of Visually Impaired People Living in Lifetime Homes. Journal of Housing for the Elderly, 2016, 30, 123-140.	0.7	4
25	Body Tracking in Healthcare. Synthesis Lectures on Assistive Rehabilitative and Health-Preserving Technologies, 2016, 5, 1-151.	0.2	7
26	Place versus response learning in fish: a comparison between species. Animal Cognition, 2016, 19, 153-161.	1.8	12
27	Development of a Novel Immersive Interactive Virtual Reality Cricket Simulator for Cricket Batting. Advances in Intelligent Systems and Computing, 2016, , 203-210.	0.6	11
28	Design and Implementation of a Low Cost Virtual Rugby Decision Making Interactive. Lecture Notes in Computer Science, 2016, , 16-32.	1.3	4
29	Finding a way: long-term care homes to support dementia. Proceedings of the Institution of Civil Engineers: Urban Design and Planning, 2015, 168, 204-217.	0.7	8
30	Parkinson's Is Time on Your Side? Evidence for Difficulties with Sensorimotor Synchronization. Frontiers in Neurology, 2015, 6, 249.	2.4	23
31	Movement and perceptual strategies to intercept virtual sound sources. Frontiers in Neuroscience, 2015, 9, 149.	2.8	6
32	Successful balance training is associated with improved multisensory function in fall-prone older adults. Computers in Human Behavior, 2015, 45, 192-203.	8.5	59
33	(Dis-)Harmony in movement: effects of musical dissonance on movement timing and form. Experimental Brain Research, 2015, 233, 1585-1595.	1.5	19
34	A Wii Bit of Fun: A Novel Platform to Deliver Effective Balance Training to Older Adults. Games for Health Journal, 2015, 4, 423-433.	2.0	50
35	Balls to the wall: How acoustic information from a ball in motion guides interceptive movement in people with Parkinson's disease. Neuroscience, 2014, 275, 508-518.	2.3	8
36	Design guidelines for developing customised serious games for Parkinson's Disease rehabilitation using bespoke game sensors. Entertainment Computing, 2014, 5, 413-424.	2.9	46

3

#	Article	IF	Citations
37	Designing games for older adults: an affordance based approach. , 2014, , .		11
38	Auditory observation of stepping actions can cue both spatial and temporal components of gait in Parkinson×3s disease patients. Neuropsychologia, 2014, 57, 140-153.	1.6	74
39	Synthesis of Walking Sounds for Alleviating Gait Disturbances in Parkinson's Disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22, 543-548.	4.9	64
40	Moving with Beats and Loops: The Structure of Auditory Events and Sensorimotor Timing. Lecture Notes in Computer Science, 2014, , 204-217.	1.3	2
41	Temporal guidance of musicians' performance movement is an acquired skill. Experimental Brain Research, 2013, 226, 221-230.	1.5	9
42	Time to get a move on: Overcoming bradykinetic movement in Parkinson's disease with artificial sensory guidance generated from biological motion. Behavioural Brain Research, 2013, 253, 113-120.	2,2	25
43	Interceptive skills in children aged 9–11 years, diagnosed with Autism Spectrum Disorder. Research in Autism Spectrum Disorders, 2013, 7, 613-623.	1.5	23
44	Understanding perception and action in sport: how can virtual reality technology help?. Sports Technology, 2013, 6, 161-169.	0.4	118
45	Assessing Lifetime Homes Standards and Part M Building Regulations for Housing Design in the UK. Design Journal, 2013, 16, 29-50.	0.8	2
46	Efficacy of a powered wheelchair simulator for school aged children: A randomized controlled trial Rehabilitation Psychology, 2013, 58, 405-411.	1.3	15
47	Perceiving and reenacting spatiotemporal characteristics of walking sounds Journal of Experimental Psychology: Human Perception and Performance, 2013, 39, 464-476.	0.9	56
48	Sensory-motor problems in Autism. Frontiers in Integrative Neuroscience, 2013, 7, 51.	2.1	113
49	Perceiving and Acting Upon Spaces in a VR Rugby Task: Expertise Effects in Affordance Detection and Task Achievement. Journal of Sport and Exercise Psychology, 2012, 34, 305-321.	1.2	42
50	Motor Skills in Children Aged 7–10 Years, Diagnosed with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2012, 42, 1799-1809.	2.7	183
51	Expertise is perceived from both sound and body movement in musical performance. Human Movement Science, 2012, 31, 1137-1150.	1.4	15
52	Timekeeping strategies operate independently from spatial and accuracy demands in beat-interception movements. Experimental Brain Research, 2012, 222, 241-253.	1.5	7
53	The effect of balance training on audio–visual integrationÂinÂolder adults. Seeing and Perceiving, 2012, 25, 155.	0.3	0
54	Detecting Deception in Movement: The Case of the Side-Step in Rugby. PLoS ONE, 2012, 7, e37494.	2.5	103

#	Article	IF	CITATIONS
55	Assessing and training standing balance in older adults: A novel approach using the †Nintendo Wii' Balance Board. Gait and Posture, 2011, 33, 303-305.	1.4	226
56	Prospective information for pass decisional behavior in rugby union. Human Movement Science, 2011, 30, 984-997.	1.4	51
57	Judging the â€~passability' of dynamic gaps in a virtual rugby environment. Human Movement Science, 2011, 30, 942-956.	1.4	51
58	How information guides movement: Intercepting curved free kicks in soccer. Human Movement Science, 2011, 30, 931-941.	1.4	34
59	Timing movements to interval durations specified by discrete or continuous sounds. Experimental Brain Research, 2011, 214, 393-402.	1.5	27
60	Virtual goal- keeping: Understanding how perception influences decisions about action. BIO Web of Conferences, 2011, 1, 00018.	0.2	0
61	Balancing deceit and disguise: How to successfully fool the defender in a $1\ \rm vs.\ 1$ situation in rugby. Human Movement Science, 2010, 29, 412-425.	1.4	66
62	Influence of the Graphical Levels of Detail of a Virtual Thrower on the Perception of the Movement. Presence: Teleoperators and Virtual Environments, 2010, 19, 243-252.	0.6	17
63	Do dynamic work instructions provide an advantage over static instructions in a small scale assembly task?. Learning and Instruction, 2010, 20, 84-93.	3.2	46
64	Virtual Thrower Versus Real Goalkeeper: The Influence of Different Visual Conditions on Performance. Presence: Teleoperators and Virtual Environments, 2010, 19, 281-290.	0.6	11
65	Bending It Like Beckham: How to Visually Fool the Goalkeeper. PLoS ONE, 2010, 5, e13161.	2.5	55
66	Virtual reality, a serious game for understanding performance and training players in sport. IEEE Computer Graphics and Applications, 2009, 30, 14-21.	1.2	96
67	Optic variables used to judge future ball arrival position in expert and novice soccer players. Attention, Perception, and Psychophysics, 2009, 71, 515-522.	1.3	44
68	Does the Level of Graphical Detail of a Virtual Handball Thrower Influence a Goalkeeper's Motor Response?. Journal of Sports Science and Medicine, 2009, 8, 501-8.	1.6	27
69	Testing the role of expansion in the prospective control of locomotion. Experimental Brain Research, 2008, 191, 301-312.	1.5	14
70	Using Time-To-Contact information to assess potential collision modulates both visual and temporal prediction networks. Frontiers in Human Neuroscience, 2008, 2, 10.	2.0	56
71	The Effect of Using Animated Work Instructions Over Text and Static Graphics When Performing a Small Scale Engineering Assembly. Advanced Concurrent Engineering, 2008, , 541-550.	0.2	7
72	Judging where a ball will go: the case of curved free kicks in football. Die Naturwissenschaften, 2006, 93, 97-101.	1.6	73

#	Article	IF	Citations
73	Prospective strategies underlie the control of interceptive actions. Human Movement Science, 2006, 25, 718-732.	1.4	45
74	Intercepting beats in predesignated target zones. Experimental Brain Research, 2005, 165, 490-504.	1.5	20
75	Judging Time Intervals Using a Model of Perceptuo-Motor Control. Journal of Cognitive Neuroscience, 2004, 16, 1185-1195.	2.3	12
76	Is perception of upper body orientation based on the inertia tensor? Normogravity versus microgravity conditions. Experimental Brain Research, 2004, 156, 471-477.	1.5	2
77	Information Used in Detecting Upcoming Collision. Perception, 2003, 32, 525-544.	1.2	28
78	Global and Local Contributions to the Optical Specification of Time to Contact: Observer Sensitivity to Composite Tau. Perception, 2002, 31, 901-924.	1.2	36
79	Revisited: the inertia tensor as a proprioceptive invariant in humans. Neuroscience Letters, 2002, 317, 106-110.	2.1	6
80	Guiding contact by coupling the taus of gaps. Experimental Brain Research, 2001, 139, 151-159.	1.5	72
81	Guiding the swing in golf putting. Nature, 2000, 405, 295-296.	27.8	129
82	Detecting motor abnormalities in preterm infants. Experimental Brain Research, 2000, 131, 359-365.	1.5	32
83	Evidence for on-line visual guidance during saccadic gaze shifts. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1799-1804.	2.6	4
84	Neonatal control of nutritive sucking pressure: evidence for an intrinsic Ï, guide. Experimental Brain Research, 1999, 124, 371-382.	1.5	73
85	Sensory and intrinsic coordination of movement. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2029-2035.	2.6	60
86	Modulations in breathing patterns during intermittent feeding in term infants and preterm infants with bronchopulmonary dysplasia. Developmental Medicine and Child Neurology, 1999, 41, 616-624.	2.1	40