
Weria Pezeshkian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/243439/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Annexin A4 trimers are recruited by high membrane curvatures in giant plasma membrane vesicles. Soft Matter, 2021, 17, 308-318.	1.2	28
2	Long chain sphingomyelin depletes cholesterol from the cytoplasmic leaflet in asymmetric lipid membranes. RSC Advances, 2021, 11, 22677-22682.	1.7	5
3	A Newly Discovered Class of Curvature Sensitive Proteins: Trimeric Annexins. Biophysical Journal, 2021, 120, 285a.	0.2	0
4	Creasing of flexible membranes at vanishing tension. Physical Review E, 2021, 103, L041001.	0.8	4
5	Capturing Membrane Phase Separation by Dual Resolution Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2021, 17, 5876-5884.	2.3	10
6	Ceramide structure dictates glycosphingolipid nanodomain assembly and function. Nature Communications, 2021, 12, 3675.	5.8	27
7	Computational Approaches to Explore Bacterial Toxin Entry into the Host Cell. Toxins, 2021, 13, 449.	1.5	7
8	Simulating realistic membrane shapes. Current Opinion in Cell Biology, 2021, 71, 103-111.	2.6	45
9	Backmapping triangulated surfaces to coarse-grained membrane models. Nature Communications, 2020, 11, 2296.	5.8	86
10	Coupling Coarse-Grained to Fine-Grained Models via Hamiltonian Replica Exchange. Journal of Chemical Theory and Computation, 2020, 16, 5313-5322.	2.3	9
11	Dual Resolution Membrane Simulations Using Virtual Sites. Journal of Physical Chemistry B, 2020, 124, 3944-3953.	1.2	21
12	A Multi-Scale Approach to Membrane Remodeling Processes. Frontiers in Molecular Biosciences, 2019, 6, 59.	1.6	19
13	Fluctuations and conformational stability of a membrane patch with curvature inducing inclusions. Soft Matter, 2019, 15, 9974-9981.	1.2	18
14	Clustering on Membranes: Fluctuations and More. Trends in Cell Biology, 2018, 28, 405-415.	3.6	61
15	Lipid Configurations from Molecular Dynamics Simulations. Biophysical Journal, 2018, 114, 1895-1907.	0.2	14
16	The role of caveolin-1 in lipid droplets and their biogenesis. Chemistry and Physics of Lipids, 2018, 211, 93-99.	1.5	18
17	Measurements and Implications of How Electrical Potentials Can Bend Membranes. Biophysical Journal, 2018, 114, 94a.	0.2	0
18	Importance of Membrane Curvature Near Hole Edges in Plasma Membrane Repair. Biophysical Journal, 2018, 114, 33a.	0.2	0

WERIA PEZESHKIAN

#	Article	IF	CITATIONS
19	Formation of Membrane Tubular Protrusions upon Localized Application of Calcium Ions to the Surface of Giant Lipid Vesicles. Biophysical Journal, 2018, 114, 562a.	0.2	0
20	Faster Simulations with a 5 fs Time Step for Lipids in the CHARMM Force Field. Journal of Chemical Theory and Computation, 2018, 14, 3342-3350.	2.3	34
21	Annexins induce curvature on free-edge membranes displaying distinct morphologies. Scientific Reports, 2018, 8, 10309.	1.6	80
22	Mechanism of Shiga Toxin Clustering on Membranes. ACS Nano, 2017, 11, 314-324.	7.3	93
23	Cholera toxin B subunit induces local curvature on lipid bilayers. FEBS Open Bio, 2017, 7, 1638-1645.	1.0	38
24	Membrane Tubulation in Lipid Vesicles Triggered by the Local Application of Calcium Ions. Langmuir, 2017, 33, 11010-11017.	1.6	51
25	Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair. Nature Communications, 2017, 8, 1623.	5.8	128
26	Membrane invagination induced by Shiga toxin B-subunit: from molecular structure to tube formation. Soft Matter, 2016, 12, 5164-5171.	1.2	82
27	The effects of globotriaosylceramide tail saturation level on bilayer phases. Soft Matter, 2015, 11, 1352-1361.	1.2	22
28	Distribution of counterions and interaction between two similarly charged dielectric slabs: Roles of charge discreteness and dielectric inhomogeneity. Physical Review E, 2012, 85, 061925.	0.8	12