Marju Puurand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2434234/publications.pdf

Version: 2024-02-01

713332 623574 24 739 14 21 citations g-index h-index papers 26 26 26 1247 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition of the Trichoderma reeseicellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnology and Bioengineering, 2004, 86, 503-511.	1.7	220
2	Mitochondria and Energetic Depression in Cell Pathophysiology. International Journal of Molecular Sciences, 2009, 10, 2252-2303.	1.8	73
3	Altered mitochondrial metabolism in the insulinâ€resistant heart. Acta Physiologica, 2020, 228, e13430.	1.8	56
4	Levan Enhances Associated Growth of Bacteroides, Escherichia, Streptococcus and Faecalibacterium in Fecal Microbiota. PLoS ONE, 2015, 10, e0144042.	1.1	51
5	Degradation of Fructans and Production of Propionic Acid by Bacteroides thetaiotaomicron are Enhanced by the Shortage of Amino Acids. Frontiers in Nutrition, 2014, 1, 21.	1.6	50
6	Distinct organization of energy metabolism in HL-1 cardiac cell line and cardiomyocytes. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 514-524.	0.5	44
7	Atrophic gastritis: deficient complex I of the respiratory chain in the mitochondria of corpus mucosal cells. Journal of Gastroenterology, 2008, 43, 780-788.	2.3	34
8	On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. American Journal of Physiology - Cell Physiology, 2019, 316, C657-C667.	2.1	31
9	Tubulin \hat{I}^2 II and \hat{I}^2 III Isoforms as the Regulators of VDAC Channel Permeability in Health and Disease. Cells, 2019, 8, 239.	1.8	31
10	Mitochondrial Respiration in Human Colorectal and Breast Cancer Clinical Material Is Regulated Differently. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-16.	1.9	25
11	Changes in the mitochondrial function and in the efficiency of energy transfer pathways during cardiomyocyte aging. Molecular and Cellular Biochemistry, 2017, 432, 141-158.	1.4	19
12	The complexity of mitochondrial outer membrane permeability and VDAC regulation by associated proteins. Journal of Bioenergetics and Biomembranes, 2018, 50, 339-354.	1.0	17
13	Deficiency of the complex I of the mitochondrial respiratory chain but improved adenylate control over succinate-dependent respiration are human gastric cancer-specific phenomena. Molecular and Cellular Biochemistry, 2012, 370, 69-78.	1.4	16
14	Bioenergetics of the aging heart and skeletal muscles: Modern concepts and controversies. Ageing Research Reviews, 2016, 28, 1-14.	5.0	16
15	Oxidative phosphorylation and its coupling to mitochondrial creatine and adenylate kinases in human gastric mucosa. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R936-R946.	0.9	15
16	Mitochondrial Respiration in KRAS and BRAF Mutated Colorectal Tumors and Polyps. Cancers, 2020, 12, 815.	1.7	15
17	Intracellular Energy-Transfer Networks and High-Resolution Respirometry: A Convenient Approach for Studying Their Function. International Journal of Molecular Sciences, 2018, 19, 2933.	1.8	11
18	Comparative analysis of the bioenergetics of human adenocarcinoma Caco-2 cell line and postoperative tissue samples from colorectal cancer patients. Biochemistry and Cell Biology, 2018, 96, 808-817.	0.9	6

#	Article	IF	CITATIONS
19	Energy Metabolic Plasticity of Colorectal Cancer Cells as a Determinant of Tumor Growth and Metastasis. Frontiers in Oncology, 2021, 11, 698951.	1.3	5
20	Adaptation of striated muscles to Wolframin deficiency in mice: Alterations in cellular bioenergetics. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129523.	1.1	2
21	Wolframin deficiency is accompanied with metabolic inflexibility in rat striated muscles. Biochemistry and Biophysics Reports, 2022, 30, 101250.	0.7	2
22	New aspects of the bioenergetics of the aging heart â€" Changes in Intracellular Energetic Unit. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, e100.	0.5	0
23	Alterations in energy transfer pathways in Wfs1 deficient mice. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, e92.	0.5	0
24	A line-broadening free real-time ³¹ P pure shift NMR method for phosphometabolomic analysis. Analyst, The, 2021, 146, 5502-5507.	1.7	0