
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2433775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epigenetic Markers Are Associated With Differences in Isocyanate Biomarker Levels in Exposed Spray-Painters. Frontiers in Genetics, 2021, 12, 700636.	2.3	5
2	Viability of cultured human skin cells treated with 1,6-hexamethylene diisocyanate monomer and its oligomer isocyanurate in different culture media. Scientific Reports, 2021, 11, 23804.	3.3	2
3	A Physiologically Based Pharmacokinetic Model for Naphthalene With Inhalation and Skin Routes of Exposure. Toxicological Sciences, 2020, 177, 377-391.	3.1	8
4	Human Cytomegalovirus Infections Are Associated With Elevated Biomarkers of Vascular Injury. Frontiers in Cellular and Infection Microbiology, 2020, 10, 334.	3.9	7
5	Radon and cancer mortality among underground uranium miners in the PÅ™Ãbram region of the Czech Republic. American Journal of Industrial Medicine, 2020, 63, 859-867.	2.1	15
6	Influence of Genetic Variance on Biomarker Levels After Occupational Exposure to 1,6-Hexamethylene Diisocyanate Monomer and 1,6-Hexamethylene Diisocyanate Isocyanurate. Frontiers in Genetics, 2020, 11, 836.	2.3	5
7	Volatile emissions from skin. , 2020, , 409-423.		1
8	Mortality and cancer incidence among underground uranium miners in the Czech Republic 1977–1992. Occupational and Environmental Medicine, 2019, 76, 511-518.	2.8	15
9	Animal production, insecticide use and self-reported symptoms and diagnoses of COPD, including chronic bronchitis, in the Agricultural Health Study. Environment International, 2019, 127, 764-772.	10.0	17
10	Inorganic Arsenic as an Endocrine Disruptor: Modulation of the Glucocorticoid Receptor Pathway in Placental Cells via CpG Methylation. Chemical Research in Toxicology, 2019, 32, 493-499.	3.3	25
11	Early Adoption of an Improved Household Energy System in Urban Rwanda. EcoHealth, 2019, 16, 7-20.	2.0	19
12	Review: Endogenously Produced Volatiles forIn VitroToxicity Testing Using Cell Lines. Applied in Vitro Toxicology, 2018, 4, 129-138.	1.1	2
13	Effective Message Elements for Disclosures About Chemicals in Cigarette Smoke. Nicotine and Tobacco Research, 2018, 20, 1047-1054.	2.6	18
14	Trisaminohexyl isocyanurate, a urinary biomarker of HDI isocyanurate exposure. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1076, 117-129.	2.3	11
15	DNA methylation modifies urine biomarker levels in 1,6-hexamethylene diisocyanate exposed workers: A pilot study. Toxicology Letters, 2014, 231, 217-226.	0.8	7
16	Single-Nucleotide Polymorphisms Associated with Skin Naphthyl–Keratin Adduct Levels in Workers Exposed to Naphthalene. Environmental Health Perspectives, 2012, 120, 857-864.	6.0	5
17	Airborne Isocyanate Exposures in the Collision Repair Industry and a Comparison to Occupational Exposure Limits. Journal of Occupational and Environmental Hygiene, 2012, 9, 329-339.	1.0	17
18	Self-Report Versus Ultrasound Measurement of Uterine Fibroid Status. Journal of Women's Health, 2012, 21, 285-293.	3.3	52

#	Article	IF	CITATIONS
19	Occupational Silica Exposure and Chronic Kidney Disease. Renal Failure, 2012, 34, 40-46.	2.1	57
20	Penetration patterns of monomeric and polymeric 1,6-hexamethylene diisocyanate monomer in human skin. Journal of Environmental Monitoring, 2012, 14, 951.	2.1	8
21	Occupational Chemicals: Metabolism, Toxicity, and Mode of Action. Progress in Molecular Biology and Translational Science, 2012, 112, 163-207.	1.7	2
22	Estimated burden of disease attributable to selected occupational exposures in the United Arab Emirates. American Journal of Industrial Medicine, 2012, 55, 940-952.	2.1	8
23	Factors affecting variability in the urinary biomarker 1,6-hexamethylene diamine in workers exposed to 1,6-hexamethylene diisocyanate. Journal of Environmental Monitoring, 2011, 13, 119-127.	2.1	12
24	A laboratory comparison of analytical methods used for isocyanates. Analytical Methods, 2011, 3, 2478.	2.7	3
25	Survey of Dermal Protection in Washington State Collision Repair Industry. Journal of Occupational and Environmental Hygiene, 2011, 8, 551-560.	1.0	9
26	The utility of naphthyl-keratin adducts as biomarkers for jet-fuel exposure. Biomarkers, 2011, 16, 590-599.	1.9	6
27	Hemoglobin adducts in workers exposed to 1,6-hexamethylene diisocyanate. Biomarkers, 2011, 16, 261-270.	1.9	15
28	Field Comparison of Air Sampling Methods for Monomeric and Polymeric 1,6-Hexamethylene Diisocyanate. Journal of Occupational and Environmental Hygiene, 2011, 8, 161-178.	1.0	4
29	Development of a Sampling Patch to Measure Dermal Exposures to Monomeric and Polymeric 1,6-Hexamethylene Diisocyanate: A Pilot Study. Journal of Occupational and Environmental Hygiene, 2011, 8, 709-717.	1.0	9
30	Quantitative Plasma Biomarker Analysis in HDI Exposure Assessment. Annals of Occupational Hygiene, 2010, 54, 41-54.	1.9	17
31	Occupational exposure to HDI: Progress and challenges in biomarker analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 2635-2642.	2.3	12
32	Urine 1,6-Hexamethylene Diamine (HDA) Levels Among Workers Exposed to 1,6-Hexamethylene Diisocyanate (HDI). Annals of Occupational Hygiene, 2010, 54, 678-91.	1.9	26
33	Exposure to naphthalene induces naphthyl-keratin adducts in human epidermisin vitroandin vivo. Biomarkers, 2010, 15, 488-497.	1.9	14
34	Effect of creatinine and specific gravity normalization on urinary biomarker 1,6-hexamethylene diamine. Journal of Environmental Monitoring, 2010, 12, 591.	2.1	23
35	Comparing Urinary Biomarkers of Airborne and Dermal Exposure to Polycyclic Aromatic Compounds in Asphalt-Exposed Workers. Annals of Occupational Hygiene, 2009, 53, 561-71.	1.9	39
36	Quantification and Statistical Modeling—Part I: Breathing-Zone Concentrations of Monomeric and Polymeric 1,6-Hexamethylene Diisocyanate. Annals of Occupational Hygiene, 2009, 53, 677-89.	1.9	28

#	Article	IF	CITATIONS
37	Quantification and Statistical Modeling—Part II: Dermal Concentrations of Monomeric and Polymeric 1,6-Hexamethylene Diisocyanate. Annals of Occupational Hygiene, 2009, 53, 691-702.	1.9	22
38	Physiologically based toxicokinetic models and their application in human exposure and internal dose assessment. Exs, 2009, 99, 37-55.	1.4	4
39	Mathematical description of the uptake of hydrocarbons in jet fuel into the stratum corneum of human volunteers. Toxicology Letters, 2008, 178, 146-151.	0.8	5
40	Quantitative monitoring of dermal and inhalation exposure to 1,6-hexamethylene diisocyanate monomer and oligomers. Journal of Environmental Monitoring, 2008, 10, 500.	2.1	39
41	Development and application of quantitative methods for monitoring dermal and inhalation exposure to propiconazole. Journal of Environmental Monitoring, 2008, 10, 336.	2.1	22
42	Tape-stripping as a method for measuring dermal exposure to resin acids during wood pellet production. Journal of Environmental Monitoring, 2008, 10, 345.	2.1	8
43	Quantifying the Relative Importance of Predictors in Multiple Linear Regression Analyses for Public Health Studies. Journal of Occupational and Environmental Hygiene, 2008, 5, 519-529.	1.0	48
44	<i>S</i> -Arylcysteineâ^'Keratin Adducts as Biomarkers of Human Dermal Exposure to Aromatic Hydrocarbons. Chemical Research in Toxicology, 2008, 21, 852-858.	3.3	12
45	Dose reconstruction for an occupational cohort at the Savannah River nuclear facility: evaluation of a hybrid method. Radiation Protection Dosimetry, 2008, 131, 188-197.	0.8	8
46	Association of Silica Exposure with Anti–Neutrophil Cytoplasmic Autoantibody Small-Vessel Vasculitis: A Population-Based, Case-Control Study. Clinical Journal of the American Society of Nephrology: CJASN, 2007, 2, 290-299.	4.5	112
47	Refined PBPK model of aggregate exposure to methyl tertiary-butyl ether. Toxicology Letters, 2007, 169, 222-235.	0.8	24
48	PBTK Modeling Demonstrates Contribution of Dermal and Inhalation Exposure Components to End-Exhaled Breath Concentrations of Naphthalene. Environmental Health Perspectives, 2007, 115, 894-901.	6.0	18
49	Testing transformations for the linear mixed model. Computational Statistics and Data Analysis, 2007, 51, 4297-4307.	1.2	7
50	Personal exposure to benzene from fuel emissions among commercial fishers: comparison of two-stroke, four-stroke and diesel engines. Journal of Exposure Science and Environmental Epidemiology, 2007, 17, 151-158.	3.9	13
51	Modeling Dermal Exposure—An Illustration for Spray Painting Applications. Journal of Occupational and Environmental Hygiene, 2006, 3, 475-480.	1.0	8
52	Dermal absorption and penetration of jet fuel components in humans. Toxicology Letters, 2006, 165, 11-21.	0.8	46
53	A Dermatotoxicokinetic Model of Human Exposures to Jet Fuel. Toxicological Sciences, 2006, 93, 22-33.	3.1	14
54	Dermal Exposure to Jet Fuel JP-8 Significantly Contributes to the Production of Urinary Naphthols in Fuel-Cell Maintenance Workers. Environmental Health Perspectives, 2006, 114, 182-185.	6.0	42

#	Article	IF	CITATIONS
55	Tape-strip sampling for measuring dermal exposure to 1,6-hexamethylene diisocyanate. Scandinavian Journal of Work, Environment and Health, 2006, 32, 225-240.	3.4	28
56	Dermal Exposure to Jet Fuel (JP-8) in US Air Force Personnel. Annals of Occupational Hygiene, 2005, 49, 639-45.	1.9	23
57	Estimating Dermal Exposure to Jet Fuel (Naphthalene) Using Adhesive Tape Strip Samples. Annals of Occupational Hygiene, 2004, 48, 139-46.	1.9	28
58	Determination of Keratin Protein in a Tape-stripped Skin Sample from Jet Fuel Exposed Skin. Annals of Occupational Hygiene, 2004, 48, 65-73.	1.9	45
59	Comparing Questionnaire-Based Methods to Assess Occupational Silica Exposure. Epidemiology, 2004, 15, 433-441.	2.7	35
60	Assessing Exposure to Crystalline Silica from Farm Work: A Population-based Study in the Southeastern United States. Annals of Epidemiology, 2003, 13, 385-392.	1.9	21
61	SYNTHESIS OFS-ARYL-D,L-CYSTEINES AND INCORPORATION INTO KERATIN SEQUENCES. Organic Preparations and Procedures International, 2003, 35, 375-382.	1.3	4
62	Electromagnetic Fields, Polychlorinated Biphenyls, and Prostate Cancer Mortality in Electric Utility Workers. American Journal of Epidemiology, 2003, 157, 683-691.	3.4	68
63	Synthesis of FMOC-Protected S -arylcysteines and Modified Keratin Sequence Peptides as Specific Epitopes as Immunogens. Polycyclic Aromatic Compounds, 2002, 22, 239-248.	2.6	0
64	Exposure to Respirable Crystalline Silica in Eastern North Carolina Farm Workers. AIHA Journal: A Journal for the Science of Occupational and Environmental Health and Safety, 2002, 63, 750-755.	0.4	28
65	Occupational exposure to crystalline silica and risk of systemic lupus erythematosus: A population-based, case-control study in the Southeastern United States. Arthritis and Rheumatism, 2002, 46, 1840-1850.	6.7	176
66	Exposure to extremely low frequency magnetic fields among working women and homemakers. Annals of Occupational Hygiene, 2001, 45, 643-650.	1.9	7
67	Population-Based Case-Control Study of Occupational Exposure to Electromagnetic Fields and Breast Cancer. Annals of Epidemiology, 2001, 11, 297-303.	1.9	41
68	Case-cohort analysis of brain cancer and leukemia in electric utility workers using a refined magnetic field job-exposure matrix. American Journal of Industrial Medicine, 2000, 38, 417-425.	2.1	33
69	A tape-stripping method for measuring dermal exposure to multifunctional acrylates. Annals of Occupational Hygiene, 2000, 44, 645-651.	1.9	41
70	Comparative in vitro cytotoxicity of ethyl acrylate and tripropylene glycol diacrylate to normal human skin and lung cells. In Vitro Cellular and Developmental Biology - Animal, 2000, 36, 611-616.	1.5	2
71	Biomarkers of nasal inflammation in wood-surface coating industry workers. , 1998, 33, 392-399.		16
72	Tripropylene Glycol Diacrylate but Not Ethyl Acrylate Induces Skin Tumors in a Twenty-Week Short-Term Tumorigenesis Study in Tg.AC (v-Ha- <i>ras</i>) Mice. Toxicologic Pathology, 1998, 26, 476-483.	1.8	22

#	Article	IF	CITATIONS
73	Assessment of Ultraviolet Radiation Exposure in the Wood Surface Coating Industry. Journal of Occupational and Environmental Hygiene, 1997, 12, 261-270.	0.4	3
74	Upper airway symptoms and function in wood surface coating industry workers. American Journal of Industrial Medicine, 1995, 28, 207-220.	2.1	8
75	A Method for Monitoring Worker Exposure to Airborne Multifunctional Acrylates. Journal of Occupational and Environmental Hygiene, 1994, 9, 977-983.	0.4	8
76	Assessment of Worker Exposure in the Processing of Ultraviolet Radiation-Cured Acrylate Lacquer-Coated Wood Products. Journal of Occupational and Environmental Hygiene, 1994, 9, 962-976.	0.4	12
77	Self-collected Breath Sampling for Monitoring Low-level Benzene Exposures among Automobile Mechanics. Annals of Occupational Hygiene, 0, , .	1.9	9