
## Nicolas Pineault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2433646/publications.pdf Version: 2024-02-01



NICOLAS DINEALUT

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Use of CRISPR/Cas9 gene editing to improve chimeric antigen-receptor T cell therapy: A systematic review and meta-analysis of preclinical studies. Cytotherapy, 2022, 24, 405-412.                                          | 0.3 | 6         |
| 2  | Rapid potency assessment of autologous peripheral blood stem cells by intracellular flow cytometry: the PBSC-IL-3-pSTAT5 assay. Cytotherapy, 2022, , .                                                                      | 0.3 | 0         |
| 3  | Multicenter evaluation of the ILâ€3â€pSTAT5 assay to assess the potency of cryopreserved stem cells from cord blood units: The BEST Collaborative study. Transfusion, 2022, 62, 1595-1601.                                  | 0.8 | 1         |
| 4  | Persistence of CRISPR/Cas9 Gene Edited Hematopoietic StemÂCells Following Transplantation: A<br>Systematic Review andÂMeta-Analysis of Preclinical Studies. Stem Cells Translational Medicine, 2021, 10,<br>996-1007.       | 1.6 | 8         |
| 5  | Current and Future Perspectives for the Cryopreservation of Cord Blood Stem Cells. Transfusion Medicine Reviews, 2021, 35, 95-102.                                                                                          | 0.9 | 15        |
| 6  | Dimethyl sulfoxide-free cryopreservation solutions for hematopoietic stem cell grafts. Cytotherapy, 2021, , 1376.                                                                                                           | 0.3 | 9         |
| 7  | Multi-laboratory assay for harmonization of enumeration of viable CD34+ and CD45+ cells in frozen cord blood units. Cytotherapy, 2020, 22, 44-51.                                                                           | 0.3 | 12        |
| 8  | Insights Into the Hematopoietic Regulatory Activities of Osteoblast by Secretomics. Proteomics, 2020, 20, 200036.                                                                                                           | 1.3 | 0         |
| 9  | Inhibition of ice recrystallization during cryopreservation of cord blood grafts improves platelet engraftment. Transfusion, 2020, 60, 769-778.                                                                             | 0.8 | 14        |
| 10 | Transient warming affects potency of cryopreserved cord blood units. Cytotherapy, 2020, 22, 690-697.                                                                                                                        | 0.3 | 6         |
| 11 | Overcoming the deceptively low viability of CD45 + cells in thawed cord blood unit segments. Vox<br>Sanguinis, 2019, 114, 876-883.                                                                                          | 0.7 | 0         |
| 12 | Paracrine Factors Released by Osteoblasts Provide Strong Platelet Engraftment Properties. Stem<br>Cells, 2019, 37, 345-356.                                                                                                 | 1.4 | 7         |
| 13 | Stringent Small Molecule Dose Requirements for the Optimal Expansion of Hematopoietic Stem Cells<br>Revealed By Predictive Analytics and Xenotransplants. Blood, 2019, 134, 1185-1185.                                      | 0.6 | 0         |
| 14 | The Ice Recrystalization Inhibitor 2FA Increases the Engraftment Activities of Cord Blood Stem and Progenitor Cells. Experimental Hematology, 2018, 64, S74.                                                                | 0.2 | 1         |
| 15 | Impact of osteoblast maturation on their paracrine growth enhancing activity on cord blood progenitors. European Journal of Haematology, 2017, 98, 542-552.                                                                 | 1.1 | 5         |
| 16 | Intersecting Worlds of Transfusion and Transplantation Medicine: An International Symposium<br>Organized by the Canadian Blood Services Centre for Innovation. Transfusion Medicine Reviews, 2017,<br>31, 183-192.          | 0.9 | 4         |
| 17 | Development and testing of a stepwise thaw and dilute protocol for cryopreserved umbilical cord blood units. Transfusion, 2017, 57, 1744-1754.                                                                              | 0.8 | 10        |
| 18 | Human Bone Marrow Mesenchymal Stromal Cell-Derived Osteoblasts Promote the Expansion of<br>Hematopoietic Progenitors Through Beta-Catenin and Notch Signaling Pathways. Stem Cells and<br>Development, 2017, 26, 1735-1748. | 1.1 | 14        |

NICOLAS PINEAULT

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Small-Molecule Ice Recrystallization Inhibitors Improve the Post-Thaw Function of Hematopoietic Stem and Progenitor Cells. ACS Omega, 2016, 1, 1010-1018.                                                          | 1.6 | 33        |
| 20 | Characterization of the growth modulatory activities of osteoblast conditioned media on cord blood progenitor cells. Cytotechnology, 2016, 68, 2257-2269.                                                          | 0.7 | 4         |
| 21 | Megakaryopoiesis and <i>ex vivo</i> differentiation of stem cells into megakaryocytes and platelets.<br>ISBT Science Series, 2015, 10, 154-162.                                                                    | 1.1 | 9         |
| 22 | Advances in umbilical cord blood stem cell expansion and clinical translation. Experimental Hematology, 2015, 43, 498-513.                                                                                         | 0.2 | 100       |
| 23 | Conditioned Medium Represents a Useful Solution to Increase the Expansion of Multipotent<br>Progenitors with Strong Platelet Engraftment Activity. Blood, 2015, 126, 4276-4276.                                    | 0.6 | 0         |
| 24 | Medium conditioned with mesenchymal stromal cell–derived osteoblasts improves the expansion and engraftment properties of cord blood progenitors. Experimental Hematology, 2014, 42, 741-752.e1.                   | 0.2 | 17        |
| 25 | Characterization of the Hematopoietic Supporting Activity of Osteoblasts Derived from Bone Marrow<br>Mesenchymal Stromal Cells. Blood, 2014, 124, 4358-4358.                                                       | 0.6 | 0         |
| 26 | Insulin-like growth factor binding protein-2 and neurotrophin 3 synergize together to promote the expansion of hematopoietic cells ex vivo. Cytokine, 2012, 58, 327-331.                                           | 1.4 | 21        |
| 27 | Single-cell level analysis of megakaryocyte growth and development. Differentiation, 2012, 83, 200-209.                                                                                                            | 1.0 | 18        |
| 28 | Megakaryocyte and Platelet Production from Human Cord Blood Stem Cells. Methods in Molecular<br>Biology, 2012, 788, 219-247.                                                                                       | 0.4 | 27        |
| 29 | Cotransplantation of Ex Vivo Expanded Progenitors with Nonexpanded Cord Blood Cells Improves<br>Platelet Recovery. Stem Cells and Development, 2012, 21, 3209-3219.                                                | 1.1 | 9         |
| 30 | Individual and synergistic cytokine effects controlling the expansion of cord blood CD34+ cells and megakaryocyte progenitors in culture. Cytotherapy, 2011, 13, 467-480.                                          | 0.3 | 37        |
| 31 | Effects of extracellular matrix proteins on the growth of haematopoietic progenitor cells.<br>Biomedical Materials (Bristol), 2011, 6, 055011.                                                                     | 1.7 | 37        |
| 32 | Young maybe, but surely not immature. Blood, 2011, 117, 3940-3941.                                                                                                                                                 | 0.6 | 1         |
| 33 | Cellularâ€based therapies to prevent or reduce thrombocytopenia. Transfusion, 2011, 51, 72S-81S.                                                                                                                   | 0.8 | 9         |
| 34 | Irradiated mesenchymal stem cells improve the ex vivo expansion of hematopoietic progenitors by<br>partly mimicking the bone marrow endosteal environment. Journal of Immunological Methods, 2011,<br>370, 93-103. | 0.6 | 29        |
| 35 | In Vitro Megakaryocyte Production and Platelet Biogenesis: State of the Art. Transfusion Medicine<br>Reviews, 2010, 24, 33-43.                                                                                     | 0.9 | 85        |
| 36 | Loss-of-function Additional sex combs like 1 mutations disrupt hematopoiesis but do not cause severe<br>myelodysplasia or leukemia. Blood, 2010, 115, 38-46.                                                       | 0.6 | 141       |

NICOLAS PINEAULT

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Polyploid megakaryocytes can complete cytokinesis. Cell Cycle, 2010, 9, 2589-2599.                                                                                                                                                                 | 1.3 | 33        |
| 38 | Characterization of the Impact of Culture on the Thrombopoietic Potential of Cord Blood<br>Progenitors Blood, 2010, 116, 3710-3710.                                                                                                                | 0.6 | 2         |
| 39 | Increased production of megakaryocytes near purity from cord blood CD34+ cells using a short two-phase culture system. Journal of Immunological Methods, 2008, 332, 82-91.                                                                         | 0.6 | 32        |
| 40 | Characterization of the Effects and Potential Mechanisms Leading to Increased Megakaryocytic Differentiation Under Mild Hyperthermia. Stem Cells and Development, 2008, 17, 483-494.                                                               | 1.1 | 31        |
| 41 | Near-maximal expansions of hematopoietic stem cells in culture using NUP98-HOX fusions.<br>Experimental Hematology, 2007, 35, 817-830.                                                                                                             | 0.2 | 54        |
| 42 | Comparison of promoter activities for efficient expression into human B cells and haematopoietic progenitors with adenovirus Ad5/F35. Journal of Immunological Methods, 2007, 322, 118-127.                                                        | 0.6 | 11        |
| 43 | Candidate Genes for Expansion and Transformation of Hematopoietic Stem Cells by NUP98-HOX Fusion<br>Genes. PLoS ONE, 2007, 2, e768.                                                                                                                | 1.1 | 53        |
| 44 | Optimization of a Cytokine Cocktail for the Expansion of Cord Blood CD34+ Cells into Megakaryocytes<br>Progenitors Blood, 2007, 110, 4041-4041.                                                                                                    | 0.6 | 0         |
| 45 | Optimization of a Cytokine Cocktail for the Expansion of Cord Blood (CB) CD34+ Cells into<br>Megakaryocytes (MK) Progenitors towards the Ex Vivo Production of Platelets Blood, 2006, 108,<br>1673-1673.                                           | 0.6 | 0         |
| 46 | Identification of the Mechanisms Responsible for the Increased Megakaryopoiesis at 39°C Blood, 2006, 108, 1128-1128.                                                                                                                               | 0.6 | 0         |
| 47 | HoxGenes: From Leukemia to Hematopoietic Stem Cell Expansion. Annals of the New York Academy of Sciences, 2005, 1044, 109-116.                                                                                                                     | 1.8 | 72        |
| 48 | Efficient in vitro megakaryocyte maturation using cytokine cocktails optimized by statistical experimental design. Experimental Hematology, 2005, 33, 1182-1191.                                                                                   | 0.2 | 78        |
| 49 | Differential and Common Leukemogenic Potentials of Multiple NUP98-Hox Fusion Proteins Alone or with Meis1. Molecular and Cellular Biology, 2004, 24, 1907-1917.                                                                                    | 1.1 | 92        |
| 50 | Multi-Log Clonal Ex-Vivo Expansion of Long Term Lympho-Myeloid Hematopoietic Stem Cells by<br>Nup98-Hox Fusion Genes Blood, 2004, 104, 153-153.                                                                                                    | 0.6 | 2         |
| 51 | The Leukemogenic Potential of the NUP98-PMX1 Fusion Protein Is Independent of the Known Binding<br>Properties of PMX1 to the Serum Response Factor and the Serum Response Element and Requires the<br>NUP98 Sequences Blood, 2004, 104, 1968-1968. | 0.6 | 0         |
| 52 | FLT3 Expression Is Increased by MEIS1 and Collaborates with NUP98-HOX Fusion Genes in the Induction of Acute Myeloid Leukemia Blood, 2004, 104, 2552-2552.                                                                                         | 0.6 | 0         |
| 53 | Redundant Leukemogenicity of NUP98-HOX Fusion Genes in Primary Murine Bone Marrow Cells<br>Correlates with Gene Expression Changes Consistent with Common Key Target Genes Blood, 2004,<br>104, 1134-1134.                                         | 0.6 | 0         |
| 54 | Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13<br>in concert with Meis1. Blood, 2003, 101, 4529-4538.                                                                                         | 0.6 | 136       |

NICOLAS PINEAULT

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Experimental Hematology, 2002, 30, 49-57.                                  | 0.2 | 247       |
| 56 | A Dual Role for Src Homology 2 Domain–Containing Inositol-5-Phosphatase (Ship) in Immunity. Journal of Experimental Medicine, 2000, 191, 781-794.                                             | 4.2 | 146       |
| 57 | Huntingtin is required for normal hematopoiesis. Human Molecular Genetics, 2000, 9, 387-394.                                                                                                  | 1.4 | 40        |
| 58 | Functional Cloning and Characterization of a Novel Nonhomeodomain Protein That Inhibits the<br>Binding of PBX1-HOX Complexes to DNA. Journal of Biological Chemistry, 2000, 275, 26172-26177. | 1.6 | 55        |